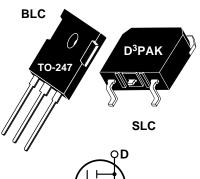


APT1001RBLC APT1001RSLC 1000V 11A 1.000Ω


POWER MOS VI™

Power MOS VITM is a new generation of low gate charge, high voltage N-Channel enhancement mode power MOSFETs. Lower gate charge is achieved by optimizing the manufacturing process to minimize \mathbf{C}_{iss} and \mathbf{C}_{rss} . Lower gate charge coupled with Power MOS VITM optimized gate layout, delivers exceptionally fast switching speeds.

- Identical Specifications: TO-247 or Surface Mount D³PAK Package
- Lower Gate Charge & Capacitance
- Easier To Drive

100% Avalanche Tested

Faster switching

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT1001R	UNIT	
V _{DSS}	Drain-Source Voltage	1000	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	11	Amna	
I _{DM}	Pulsed Drain Current ①	44	Amps	
V _{GS}	Gate-Source Voltage Continuous	±30	Volts	
$V_{\rm GSM}$	Gate-Source Voltage Transient	±40	VOIIS	
P _D	Total Power Dissipation @ T _C = 25°C	280	Watts	
, D	Linear Derating Factor	2.24	W/°C	
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C	
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300		
I _{AR}	Avalanche Current (Repetitive and Non-Repetitive)	26	Amps	
E _{AR}	Repetitive Avalanche Energy ①	30	m l	
E _{AS}	Single Pulse Avalanche Energy ^④	1210	mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250μA)	1000			Volts
I _{D(on)}	On State Drain Current ② $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	11			Amps
R _{DS(on)}	Drain-Source On-State Resistance ② (V _{GS} = 10V, 0.5 I _{D[Cont.]})			1.00	Ohms
I _{DSS}	Zero Gate Voltage Drain Current $(V_{DS} = V_{DSS}, V_{GS} = 0V)$			25	μΑ
	Zero Gate Voltage Drain Current $(V_{DS} = 0.8 V_{DSS}, V_{GS} = 0V, T_{C} = 125$ °C)			250	
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 1 \text{mA})$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

USA 405 S.W. Columbia Street EUROPE Chemin de Magret Bend, Oregon 97702-1035 F-33700 Merignac - France Phone: (541) 382-8028 Phone: (33) 5 57 92 15 15 FAX: (541) 388-0364 FAX: (33) 5 56 47 97 61

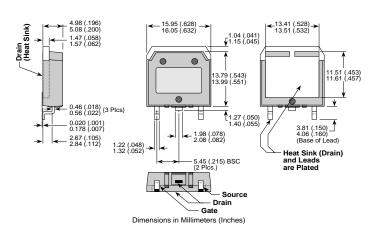
Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		2310		
C _{oss}	Output Capacitance	V _{DS} = 25V		280		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		90		
Q_g	Total Gate Charge ^③	V _{GS} = 10V		75		
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		17		nC
Q _{gd}	Gate-Drain ("Miller") Charge	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$		40		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		14		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		11		20
t _{d(off)}	Turn-off Delay Time	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$		40		ns
t _f	Fall Time	$R_{G} = 1.6\Omega$		13		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
I _s	Continuous Source Current (Body Diode)			11	Amno
I _{SM}	Pulsed Source Current (1) (Body Diode)			44	Amps
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _{D[Cont.]})			1.3	Volts
t _{rr}	Reverse Recovery Time $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		700		ns
Q rr	Reverse Recovery Charge $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		9.0		μC

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction to Case			0.45	°C/W
$R_{ hetaJA}$	Junction to Ambient			40	


① Repetitive Rating: Pulse width limited by maximum junction temperature.

APT Reserves the right to change, without notice, the specifications and information contained herein.

TO-247 Package Outline

4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 6.15 (.242) BSC 1.5.26 (.640) 4.50 (.177) Max. 2.87 (.113) 3.12 (.123) 2.87 (.13) 3.12 (.123) 2.87 (.13) 3.12 (.123) 2.87 (.13) 3.12 (.123) 4.50 (.177) Max. 2.87 (.13) 3.12 (.123) 2.87 (.13) 3.12 (.123) 4.50 (.178) 2.79 (.30) 2.79 (.3

D³PAK Package Outline

³ See MIL-STD-750 Method 3471

 $[\]textcircled{4}$ Starting T_i = +25°C, L =20.0mH, R_G = 25 Ω , Peak I_L = 11A

 $[\]odot$ Pulse Test: Pulse width < 380 μ S, Duty Cycle < 2%