

XFP Single Chip Transceiver IC

Preliminary Technical Data

ADN2928

FEATURES

Fully integrated limiting amplifier and signal conditioner transceiver IC

Meets XFP Telecoms and Datacoms module requirements Supports OC-192, OC-192-FEC, 10GE, 10GFC, 10GE G.709 Line and system loop-back modes

Integrated Rx limiting amplifier with 10 mV sensitivity

Tx path equalizer for up to 12 inches of FR4

Rx loss of signal (LOS) detector CML serial data interface

Supply power: 760 mW

3.3 V and 1.8 V power supplies

XFI signalling

Flip-chip, 49-pin BGA, 6 mm \times 6 mm package

Temperature range 0°C to 85°C

Power down mode

APPLICATIONS

XFP MSA module receive/transmit signal conditioner SONET OC-192, (+FEC) transponders 10 gigabit Ethernet optical transceivers 10 gigabit small form factor modules Test equipment Serial backplane applications

PRODUCT OVERVIEW

The ADN2928 provides the transmit and receive functions of quantization, loss of signal detect, and clock and data recovery at rates from 9.953 Gbps to 11.1 Gbps. The part is designed with the flexibility to allow it to be used in either Telecoms or Datacoms XFP module applications. The key advantages of this circuit's delay and phase-locked loop architecture are that it provides a low jitter transfer bandwidth of 1 MHz, while also exceeding the jitter tolerance requirements of XFP, SONET, Gigabit Ethernet and Fibre Channel. The architecture also provides fundamentally 0 dB of Jitter peaking.

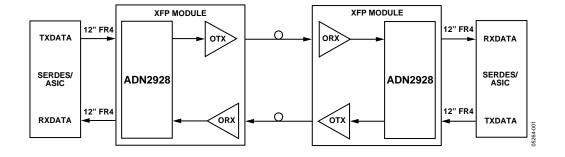


Figure 1. Typical XFP Application

TABLE OF CONTENTS

Functional Block Diagram 3
Receive Path Specifications
Transmit Path Specifications5
Common Specifications6
Absolute Maximum Ratings7
Pin Configuration and Function Descriptions8
General Description9
I ² C Interface9
Receive Path9
Transmit Path9
System Functions9
Applications Information
PCB Design Guidelines
Outline Dimensions11
Ordering Cuide

REVISION HISTORY

3/05—Revision PrB: Preliminary Version

FUNCTIONAL BLOCK DIAGRAM

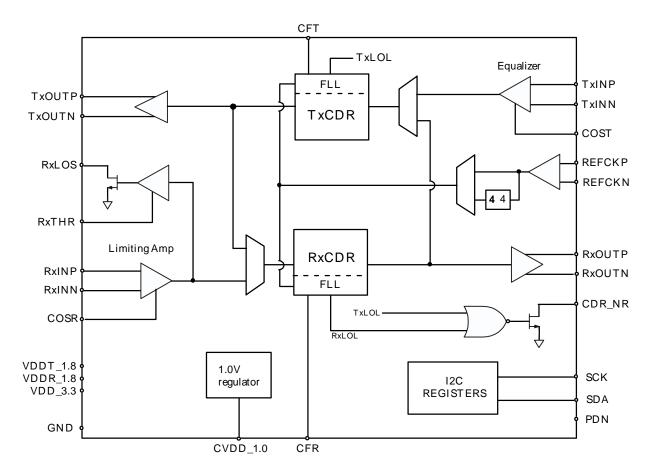


Figure 2. ADN2928 Functional Block Diagram

RECEIVE PATH SPECIFICATIONS

Table 1

PARAMETER	Conditions	Min	Min Typ		Unit	
QUANTIZER DC CHARACTERISTICS	ac coupled, PIN-NIN					
Peak-to-Peak Differential Input	PIN-NIN, BER < 10 ⁻¹²			1.8	V	
Input Sensitivity, VSENSE		10			mV	
Input Offset Voltage			1		mV	
Input Current					μΑ	
Input RMS Noise				365	μV	
QUANTIZER AC CHARACTERISTICS	Differential					
−3 dB Bandwidth	@ 10 GHz		10		GHz	
Input Data Rate		9.953		11.1	Gbps	
Small Signal Gain			45		dB	
S11			-12		dB	
Random Jitter			0.3		ps rms	
Input Resistance			100		Ω	
Input Capacitance			TBD		pF	
Power Supply Rejection	100 mV p-p @ 100 MHz on VDD		60		dB	
LEVEL DETECT						
LOS Signal Level		5			mV	
Hysteresis		3			dB	
PHASE-LOCKED LOOP CHARACTERISTICS						
For All Input Data Rates						
Jitter Transfer BW - Telecoms		1.2		3	MHz	
Jitter Transfer BW - Datacoms		1.2		3	MHz	
Jitter Tolerance - Telecoms						
Sinusoidal Jitter Tolerance	Meets SONET mask.					
Jitter Tolerance - Datacoms						
Sinusoidal Jitter Tolerance	Meets 802.3ae mask					
Jitter Generation rms				0.7	ps rms	
Jitter Peaking	Measured 50 kHz – 80 MHz					
	< 120 kHz			0	dB	
	> 120 kHz			0	dB	
CML OUTPUTS - RxOUTP/N						
Single-Ended Output Swing	Vse	200		425	mV	
Differential Output Swing	Vdiff	400		850	mV	
Output High Voltage	Voh	TBD				
Output Low Voltage	Vol			TBD		
Rise Time	20% – 80%	24			ps	
Fall Time	80% – 20%	24			ps	

TRANSMIT PATH SPECIFICATIONS

Table 2.

PARAMETER	Conditions	Min	Тур	Max	Unit	
QUANTIZER DC CHARACTERISTICS	ac coupled, PIN – NIN					
Peak-to-Peak Differential Input	PIN – NIN, BER < 10 ⁻¹²			1.8	V	
Input Sensitivity, VSENSE		40			mV	
Input Offset Voltage			1		mV	
Input Current					μΑ	
Input RMS Noise					μV	
QUANTIZER AC CHARACTERISTICS	Differential					
–3dB Bandwidth	@ 10 GHz		10		GHz	
Input Data Rate		9.953		11.1	Gbps	
Small Signal Gain			32		dB	
S11			-12		dB	
Random Jitter			0.3		ps rms	
Input Resistance			100		Ω	
Input Capacitance			TBD		pF	
Power-Supply Rejection	100 mV p-p @ 100 MHz on VDD		60		dB	
PHASE-LOCKED LOOP CHARACTERISTICS						
For All Input Data Rates						
Jitter Transfer BW		1.2		3	MHz	
Jitter Tolerance - Telecoms						
Sinusoidal Jitter Tolerance	Meets SONET mask.					
Jitter Tolerance - Datacoms						
Sinusoidal Jitter Tolerance	Meets 802.3ae mask					
Jitter Generation rms				0.7	pS rms	
Jitter Peaking	Measured 50 kHz – 80 MHz					
	< 120 kHz			0	dB	
	> 120 kHz			0	dB	
CML OUTPUTS - TxOUTP/N						
Single-Ended Output Swing	Vse	300		500	mV	
Differential Output Swing	Vdiff	700		1000	mV	
Output High Voltage	Voh	TBD				
Output Low Voltage	Vol			TBD		
Rise Time	20% – 80%	24			ps	
Fall Time	80% – 20%	24			ps	

COMMON SPECIFICATIONS

Table 3.

PARAMETER	Conditions	Min	Тур	Max	Unit
POWER-SUPPLY VOLTAGE, VDD_3.3		3	3.3	3.6	V
POWER-SUPPLY VOLTAGE, VDDx_1.8		1.6	1.8	2.0	V
POWER SUPPLY CURRENT, VDD_3.3					mA
POWER SUPPLY CURRENT, VDDx_1.8					mA
POWER			760		mW
RECEIVE REFERENCE CLOCK INPUTS					
Clock Frequency	CTRL[0]=0		155		MHz
Clock Frequency	CTRL[0]=1		622		MHz
Input Voltage Range					V

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	5 V
Input Voltage (Pin x or Pin x to Vcc)	TBD
Maximum Junction Temperature	165℃
Storage Temperature Range	−65°C to +150°C
Lead Temperature (Soldering 10 sec)	300℃
ESD Rating (Human Body Model)	TBD V

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	1	2	3	4	5	6	7
Α	\bigcirc						
В	\bigcirc						
С	\bigcirc						
D	\bigcirc						
Ε	\bigcirc						
F	\bigcirc						
G	\bigcirc						

Figure 3. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Type1	Description
A1, A4, B5, B6, D3 to D6, E3,	GND	Р	Ground
F2, F6, G4, G7	VDDT 10	D	1.0 V transmitter neuror supply
A7, C6, D7, E5, E6, F7	VDDT_1.8	P	1.8 V transmitter power supply
B1, C2, C3, D1, E4, G1	VDDR_1.8	P	1.8 V receiver power supply
C1, E7	VDD_3.3	Р	3.3 V power supply
A2	RxINN	Al	Negative Differential Rx Data Input
A3	RxINP	Al	Positive Differential Rx Data Input
A5	TxOUTP	AO	Positive Differential Tx Data Output; CML
A6	TxOUTN	AO	Negative Differential Tx Data Output; CML
B2	RxTHR	Al	Receiver LOS Threshold Setting Resistor
B3	COSR	AO	Receiver Offset Compensation Loop Capacitor
B4	CVDD_1.0	Р	100 nF Decoupling Capacitor for Internal 1 V digital supply
B7	NC		No Connect
C4	REFCLKN	Al	Negative Differential Reference Clock Input
C5	REFCLKP	Al	Positive Differential Reference Clock Input
C7	CFT	AO	Transmitter FLL Loop Filter Capacitor
D2	RxLOS	DO	Receiver Loss of Signal Alarm Output. Active High
E1	CFR	AO	Receiver FLL Loop Filter Capacitor
E2	PDN	DI	Chip Power Down Input
F1	CDR_NR	DO	CDR Not Ready Alarm. Active High.
F3	SDA	DI/O	I ² C Serial Data Input.
F4	SCK	DI	I ² C Serial Clock Input
F5	COST	AO	Transmitter Offset Compensation Loop Capacitor
G2	RxOUTN	AO	Negative Differential Rx Data Output; CML
G3	RxOUTP	AO	Positive Differential Rx Data Output; CML
G5	TxINN	Al	Negative Differential Tx Data Input
G6	TxINP	Al	Postive Differential Tx Data Input

 $^{^{1}}$ Type: P = power, AI = analog input, AO = analog output, DI = digital input, DO = digital output.

GENERAL DESCRIPTION

The ADN2928 provides the transmit and receive functions of quantization, loss of signal detect, and clock and data recovery at rates from 9.953 Gbps to 11.1 Gbps. The part is designed with the flexibility to allow it to be used in either Telecoms or Datacoms XFP module applications.

I²C INTERFACE

The I²C interface is used to control the following functions: data invert and squelch, lineside loop-back, XFI system loop-back, REFCLK divide ratio, status readback, optional equalizer control, and software reset.

RECEIVE PATH Limiting Amplifier

A limiting amplifier on the data inputs RxINP/N, of the device has differential inputs which are internally terminate with 50 Ω to an on-chip reference voltage. The limiting amplifier quantizes the data, with a sensitivity of better than 10 mV.

Loss of Signal Detector

The receiver front end signal-level detector indicates when the input level has dropped below a user-adjustable level, by asserting Pin LOS to logic high. The trip point can be varied by an external resistor. The signal-level detector circuitry has a comparator with a minimum hysteresis of 3 dB to prevent chatter.

Clock and Data Recovery PLL

The receive path clock and data recovery (CDR) block recovers the clock from the serial data input and provides proper timing for the data outputs. This block contains a synthesizer-frequency tracking loop, and a data-phase tracking loop. A synthesizer tracking loop locks the divided-down clock derived from the VCO frequency to a local reference clock running at 1/64 or 1/16 the input data rate. Once it is determined that the VCO frequency is locked to the reference clock and that valid serial data is present at the input, then the synthesizer loop is switched off, and the data-phase tracking loop is turned on. The data-phase tracking loop is designed in a manner such that, once locked, the sampling edge of the VCO clock is automatically aligned with the center of the data input. A key feature of the delay and phase-locked loop (DPLL) architecture is that, unlike an ordinary PLL, it provides for 0 dB jitter peaking.

CML Outputs

The data signal that is retimed by the CDR clock is driven off-chip by 50 Ω terminated current mode logic line drivers. The data polarity can be optionally inverted through the I²C interface, and can be squelched. Output amplitudes can be adjusted.

Lock Detector

The lock detector monitors the frequency difference between the VCO and the reference clock and asserts a lock signal (RxLOCK) when the VCO is within 500 ppm of the center frequency. This enables the phase loop which maintains phase lock, unless the frequency error exceeds 1000 ppm.

TRANSMIT PATH

Equalizer

An equalizer on the data inputs TxINP/N, of the ADN2928 has differential inputs which are internally terminated with 50 ohms to an on chip reference voltage. The equalizer compensates for the ISI induced signal distortion resulting from up to 12 inches of FR4, plus one connector. This enables the CDR to retime the data from signals transmitted over standard XFI interfaces. The equalizer characteristics have been optimized such that no user programming is required to achieve low retiming error rates for all data rates and XFI compliant channels. However for other applications the equalizer boost characteristics can be programmed through the I2C interface.

Clock and Data Recovery PLL

The transmit path clock and data recovery (CDR) block recovers the clock from the serial data input and provides proper timing for the data outputs. This block contains a synthesizer frequency tracking loop, and a data phase tracking loop. A synthesizer tracking loop locks the divided down clock derived from the VCO frequency to a local reference clock running at 1/64 or 1/16 the input data rate. Once it is determined that the VCO frequency is locked to the reference clock and valid serial data is present at the input, then the synthesizer loop is switched off, and the data phase tracking loop is turned on. The data phase tracking loop is designed in a manner such that, once locked, the sampling edge of the VCO clock is automatically aligned with the center of the data input. A key feature of the Delay and Phase Locked Loop (DPLL) architecture used is that unlike an ordinary PLL, it provides for 0 dB jitter peaking.

CML Outputs

The data signal that is retimed by the CDR clock is driven off-chip by 50 Ω terminated current-mode logic line drivers. The data polarity can be optionally inverted through the I²C interface, and can be squelched. Output amplitudes can be adjusted.

Lock Detector

The lock detector monitors the frequency difference between the VCO and the reference clock and asserts a lock signal (TxLOCK) when the VCO is within 500 ppm of the center frequency. This enables the phase loop which maintains phase lock, unless the frequency error exceeds 1000 ppm.

SYSTEM FUNCTIONS XFI System Loopback

In this mode data received on the TxINP/N pins is retimed and output on the RxOUTP,N pins. The TxINP/N data is not present on the TxOUTP/N pins.

Lineside Loopback

In this mode data received on the RxINP/N pins is retimed and output on the TxOUTP/N pins. The received data is not present on the RxOUTP/N pins.

APPLICATIONS INFORMATION

PCB DESIGN GUIDELINES

Proper RF PCB design techniques must be used for optimal performance. A typical ADN2928 applications circuit is shown in Figure 4.

Power Supply Connections and Ground Planes

Using one low impedance ground plane is recommended. Solder the GND pins directly to the ground plane to reduce series inductance. If the ground plane is an internal plane and connections to the ground plane are made through vias, multiple vias can be used in parallel to reduce the series inductance.

Use of a 22 μF electrolytic capacitor between each supply and GND is recommended at the location where the supply enters the PCB. Use 0.1 μF and 1 nF ceramic chip capacitors to

decouple the IC power supplies between VDD and VEE. These caps should be placed as close as possible to the ADN2928 VDD pins.

If connections to the supply and ground are made through vias, the use of multiple vias in parallel helps to reduce series inductance.

Transmission Lines

Use of 50 Ω transmission lines is required for all high frequency input and output signals to minimize reflections: RxINN/P, RxOUTN/P, TxINN/P, TxOUTN/P, REFCLKN/P. It is also necessary for the differential pairs to be matched in length to avoid skew between the differential traces. As with any high speed mixed-signal design, take care to keep all high speed digital traces away from sensitive analog nodes.

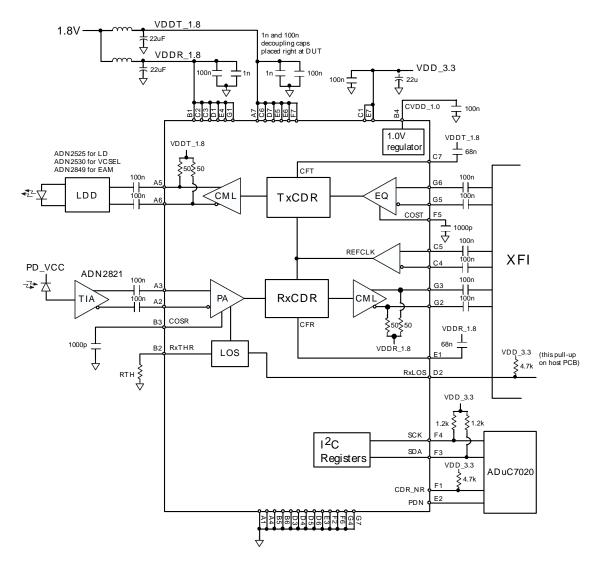
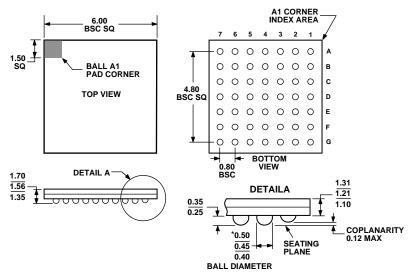



Figure 4. Typical ADN2928 Applications Circuit

OUTLINE DIMENSIONS

*COMPLIANT TO JEDEC STANDARDS MO-205 WITH THE EXCEPTION OF BALL DIAMETER.

Figure 5. 49-Lead Chip Scale Package Ball Grid Array [CSP_BGA] (BC-49-2) Dimensions shown in millimeters

ORDERING GUIDE

Model	Model Temperature Range		Package Option
ADN2928	0° to 85°C		

A	N	N	2	q	2	Q
м	u	11	L	J	L	u

Preliminary Technical Data

NOTES

Purchase of licensed l^2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips l^2C Patent Rights to use these components in an l^2C system, provided that the system conforms to the l^2C Standard Specification as defined by Philips.