

# I<sup>2</sup>C® Compatible, Wide Bandwidth, Triple 2x2 Crosspoint Switch

**Preliminary Technical Data** 

ADG799A/ADG799G

#### **FEATURES**

Bandwidth: 230 MHz

Low insertion loss and on resistance: 2.6  $\Omega$  typical

On resistance flatness: 0.3  $\Omega$  typical Single 3 V/5 V supply operation

3.3 V analog signal range (5 V supply, 75  $\Omega$  load) Low quiescent supply current: 1 nA typical

Fast switching times:

t<sub>ON</sub>: 184 ns t<sub>OFF</sub>: 180 ns

I<sup>2</sup>C-compatible interface Compact 24-lead LFCSP

Two I<sup>2</sup>C-controllable logic outputs (ADG799G only)

### **APPLICATIONS**

RGB/YPbPr video switches HDTV Projection TV DVD-R/RW AV receivers

# **GENERAL DESCRIPTION**

The ADG799A/ADG799G are monolithic CMOS devices comprising three 2x2 crosspoint switches controllable via a standard I<sup>2</sup>C serial interface. The CMOS process provides ultralow power dissipation, yet offers high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range and wide bandwidth ensures excellent linearity and low distortion. These features, combined with a wide input signal range, make the ADG799A/ADG799G the ideal switching solution for a wide range of TV applications including RGB and YPbPr video switches for picture-in picture applications.

The switches conduct equally well in both directions when on. In the off condition, signal levels up to the supplies are blocked. The ADG799A/ADG799G switches exhibit break-before-make switching action. The ADG799G has two general-purpose logic output pins controlled by the I<sup>2</sup>C interface that can also be used to control other non I<sup>2</sup>C compatible devices such as video filters.

## FUNCTIONAL BLOCK DIAGRAM




Figure 1.

The integrated I<sup>2</sup>C interface provides a large degree of flexibility in the system design. It has three user-adjustable I<sup>2</sup>C address pins that allow up to eight devices on the same bus. This allows the user to expand the capability of the device by increasing the size of the switching array.

The ADG799A/ADG799G operate from single 3 V or 5 V supply voltages and are available in a compact, 4 mm x 4 mm body, 24-lead, lead-free LFCSP.

# **PRODUCT HIGHLIGHTS**

- Wide bandwidth: 230 MHz.
- 2. Ultralow power dissipation.
- 3. Extended input signal range.
- 4. Integrated I<sup>2</sup>C serial interface.
- 5. Compact 4 mm x 4 mm, 24-lead, lead-free LFCSP.

# **Preliminary Technical Data**

# **TABLE OF CONTENTS**

| Features                                     | Test Circuits                      | 14 |
|----------------------------------------------|------------------------------------|----|
| Applications                                 | Terminology                        | 16 |
| Functional Block Diagram                     | Theory of Operation                | 17 |
| General Description                          | I <sup>2</sup> C Serial Interface  | 17 |
| Product Highlights                           | I <sup>2</sup> C Address           | 17 |
| Revision History                             | Write Operation                    | 17 |
| Specifications                               | LDSW Bit                           | 18 |
| I <sup>2</sup> C Timing Specifications7      | Power On/Software Reset            | 18 |
| Timing Diagram                               | Read Operation                     | 18 |
| Absolute Maximum Ratings                     | Evaluation Board                   | 20 |
| ESD Caution9                                 | Using the ADG799G Evaluation Board | 20 |
| Pin Configurations and Function Descriptions | Outline Dimensions                 | 23 |
| Typical Performance Characteristics          | Ordering Guide                     | 23 |

# **REVISION HISTORY**

6/06—Revision 0: Initial Version

# **SPECIFICATIONS**

 $V_{DD}$  = 5 V  $\pm$  10%, GND = 0 V,  $T_{A}$  =  $-40^{\circ} C$  to +85°C, unless otherwise noted.

Table 1.

| ANALOG SWITCH  Analog Signal Range²  On Resistance, Ron  On Resistance Matching Between Channels, ΔRon  On Resistance Matching Between Channels, ΔRon  On Resistance Flatness, R <sub>FLAT(NO)</sub> On Resistance Flatness, R <sub>FLAT(NO)</sub> On Resistance Flatness, R <sub>FLAT(NO)</sub> LEAKAGE CURRENTS  Source Off Leakage (Islore)  Drain Off Leakage (Islore)  Channel On Leakage (Islore)  Drain Off Leakage (Islore)  Drain Off Leakage (Islore)  Channel On Leakage (Islore)  DYDNAMIC CHARACTERISTICS³  ton, tenale  Toff, tobsale  Break-Before-Make Time Delay, to  I²C to GPO Propagation Delay, t₁, t₂, (ADG799G only)  Off Isloation  Channel-to-Channel Crosstalk  Same Crosspoint Switch  Different Crosspoint Switch  Different Crosspoint Switch  Charge Injection  Csioff)  Csioff)  Csioff)  Csioff)  Csioff)  Csioff)  Csioff)  Coicon, Csion  Power Supply Rejection Ratio, PSSR  Differential Gain Error  Differential Phase Error  LOGIC INPUTS³  AO, A1, A2 Pins  Input High Voltage, V <sub>INL</sub> Input Capacitance, Cin  On Resistance, Ron  Vs = Vox, RL = 1 MΩ  Vs = Vox, RL = 150 Ω, see Figure 22  Vo = 0 V to 1V, los = -10 mA, see Figure 22  Vo = 0 V to 1V, los = -10 mA, see Figure 22  Vo = 0 V, los = -10 mA, see Figure 22  Vo = 0 V to 1V, los = -10 mA, see Figure 22  Vo = 0 V, los = -10 mA, see Figure 23  Vo = 4 V/1 V, Vs = 1 V/4 V, see Figure 23  Vo = 4 V/1 V, Vs = 1 V/4 V, see Figure 23  Vo = 4 V/1 V, Vs = 1 V/4 V, see Figure 23  Vo = 4 V/1 V, Vs = 1 V/4 V, see Figure 23  CL = 35 pF, RL = 50 Ω, Vs = 2 V, see Figure 25  CL = 35 pF, RL = 50 Ω, Vs = 2 V, see Figure 25  CL = 35 pF, RL = 50 Ω, see Figure 26  La = 10 MHz, RL = 50 Ω, see Figure 26  F = 10 MHz, RL = 50 Ω, see Figure 27  RL = 100 Ω  CL = 1 nF, Vs = 0 V, see Figure 30  CL = 1 nF, Vs = 0 V, see Figure 30  Ze = 4 V/1 V, Vs = 1 V/4 V, see Figure 25  CL = 25 pF, RL = 50 Ω, see Figure 26  CL = 35 pF, RL = 50 Ω, see Figure 26  CL = 35 pF, RL = 50 Ω, see Figure 26  CL = 35 pF, RL = 50 Ω, see Figure 26  CL = 35 pF, RL = 50 Ω, see Figure 26  CL = 35 pF, RL = 50 Ω, see Figure 26  CL = 35 pF, RL = 50 Ω, see F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6<br>0.15<br>0.3 |                        | ν<br>ν<br>Ω |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-------------|
| On Resistance, $R_{ON}$ $V_S = V_{DD}$ , $R_L = 75 \Omega$ $V_D = 0 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ , see Figure 22 $V_D = 0 \text{ V}$ to $S_D = -10 \text{ mA}$ , see Figure 22 $V_D = 0 \text{ V}$ to $S_D = -10 \text{ mA}$ , see Figure 22 $V_D = 0 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ M}$ , $I_{DS} = -10 \text{ mA}$                                                                                                                                                                                                                                     | 0.15               | 3.3<br>5<br>5.5<br>1.8 | V<br>Ω      |
| On Resistance, Ron $V_D = 0 \text{ V, } l_{DS} = -10 \text{ mA, see Figure 22} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to 1 V, } l_{DS} = -10 \text{ mA} \\ V_D = 0 \text{ V to V} l_{DS} \\ V_D = 0 \text{ V to V} l_{DS} \\ V_D = 0 \text{ V to V} l_{DS} \\ V_D = 0 \text{ V to V} l_{DS} \\ V_D = 0 \text{ V to V} l_{DS} \\ V$                                                                                                                                                                                                                                                                                          | 0.15               | 5<br>5.5<br>1.8        | Ω           |
| On Resistance Matching Between Channels, $\Delta R_{ON}$ On Resistance Flatness, $R_{FLAT(ON)}$ On Resistance Flatness, $R_{FLAT(ON)}$ Drain Off Leakage ( $I_{S(OFF)}$ )  Drain Off Leakage ( $I_{D(OFF)}$ )  Drain Off Leakage ( $I_{D(ON)}$ , $I_{S(ON)}$ )  DYNAMIC CHARACTERISTICS³ $I_{ON, I_{FNABLE}}$ $I_{OFF, I_{DISABLE}}$ Break-Before-Make Time Delay, $I_{O}$ Channel-to-Channel Crosstalk  Same Crosspoint Switch  Different Crosspoint Switch  Different Crosspoint Switch  Different Crosspoint Switch  Different Grospoint Switch  CL = 35 pF, R <sub>L</sub> = 50 $\Omega$ , ys = Figure 25  CL = 35 pF, R <sub>L</sub> = 50 $\Omega$ , ys = Figure 26  The Junual Switch Grospoint Switch Grospoint Switch Grospoint Switch Grospoint Switch Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15               | 5.5<br>1.8             |             |
| On Resistance Matching Between Channels, $\Delta R_{ON}$ On Resistance Flatness, $R_{FLAT(ON)}$ On Resistance Flatness, $R_{FLAT(ON)}$ Drain Off Leakage ( $I_{S(OFF)}$ )  Drain Off Leakage ( $I_{D(OFF)}$ )  Drain Off Leakage ( $I_{D(ON)}$ , $I_{S(ON)}$ )  DYNAMIC CHARACTERISTICS³ $I_{ON, I_{FNABLE}}$ $I_{OFF, I_{DISABLE}}$ Break-Before-Make Time Delay, $I_{O}$ Channel-to-Channel Crosstalk  Same Crosspoint Switch  Different Crosspoint Switch  Different Crosspoint Switch  Different Crosspoint Switch  Different Grospoint Switch  CL = 35 pF, R <sub>L</sub> = 50 $\Omega$ , ys = Figure 25  CL = 35 pF, R <sub>L</sub> = 50 $\Omega$ , ys = Figure 26  The Junual Switch Grospoint Switch Grospoint Switch Grospoint Switch Grospoint Switch Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 1.8                    |             |
| On Resistance Matching Between Channels, $\Delta R_{ON}$ $V_D = 0 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 1 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $I_{DS} = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = -10 \text{ mA}$ $V_D = 0 \text{ V to 1 V}$ , $V_D = 0 \text{ V to 1 V}$ , $V_D = 0 \text{ V to 1 V}$ , $V_D = 0 \text{ V to 1 V V}$ , $V_D = 0 \text{ V to 1 V V}$ , $V_D = 0 \text{ V to 1 V V}$ , $V_D = 0 \text{ V to 1 V V}$ , $V_D = 0 \text{ V to 1 V V}$ , $V_D = 0 \text{ V to 1 V V V}$ , $V_D = 0 \text{ V to 1 V V V V V V}$ , $V_D = 0  V to 1 V V V V V V V V V V V V V V V V V V $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                        | Ω           |
| V <sub>D</sub> = 1 V, I <sub>DS</sub> = −10 mA     On Resistance Flatness, R <sub>FLAT(ON)</sub>   V <sub>D</sub> = 0 V to 1 V, I <sub>DS</sub> = −10 mA     LEAKAGE CURRENTS   V <sub>D</sub> = 4 V/1 V, V <sub>S</sub> = 1 V/4 V, see Figure 23     Drain Off Leakage (I <sub>SIOFF</sub> )   V <sub>D</sub> = 4 V/1 V, V <sub>S</sub> = 1 V/4 V, see Figure 23     Channel On Leakage (I <sub>D(ON),</sub> I <sub>SION)</sub>   V <sub>D</sub> = 4 V/1 V, V <sub>S</sub> = 1 V/4 V, see Figure 23     DYNAMIC CHARACTERISTICS <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3                | 1.0                    | Ω           |
| LEAKAGE CURRENTS       VD = 4 V/1 V, Vs = 1 V/4 V, see Figure 23         Source Off Leakage (IsloFi)       VD = 4 V/1 V, Vs = 1 V/4 V, see Figure 23         Drain Off Leakage (IblOFFi)       VD = 4 V/1 V, Vs = 1 V/4 V, see Figure 23         Channel On Leakage (IblOFFi)       VD = 4 V/1 V, Vs = 1 V/4 V, see Figure 23         DYNAMIC CHARACTERISTICS3       CL = 35 pF, RL = 50 Ω, Vs = 2 V, see Figure 25         LOFF, ToISABLE       CL = 35 pF, RL = 50 Ω, Vs = 2 V, see Figure 25         Break-Before-Make Time Delay, tD       CL = 35 pF, RL = 50 Ω, Vs = 2 V, see Figure 25         PC to GPO Propagation Delay, tH, tL (ADG799G only)       FL = 50 Ω, Vs = 2 V, see Figure 26         Off Isolation       F = 10 MHz, RL = 50 Ω, see Figure 28         Channel-to-Channel Crosstalk       F = 10 MHz, RL = 50 Ω, see Figure 29         Same Crosspoint Switch       Different Crosspoint Switch         Different Crosspoint Switch       RL = 50 Ω, see Figure 27         RL = 100 Ω       CL = 1 nF, Vs = 0 V, see Figure 30         CloFF       CDIOFF         CDIOFF       CDIOFF         CDIOFF       CCIR330 test signal         LOGIC INPUTS³       A0, A1, A2 Pins         Input High Voltage, VINL       Input Low Voltage, VINL         Input Current, INL or INH       VIN = 0 V to VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                | 1.8                    | Ω           |
| LEAKAGE CURRENTS       VD = 4 V/1 V, Vs = 1 V/4 V, see Figure 23         Source Off Leakage (IsloFi)       VD = 4 V/1 V, Vs = 1 V/4 V, see Figure 23         Drain Off Leakage (IblOFFi)       VD = 4 V/1 V, Vs = 1 V/4 V, see Figure 23         Channel On Leakage (IblOFFi)       VD = 4 V/1 V, Vs = 1 V/4 V, see Figure 23         DYNAMIC CHARACTERISTICS3       CL = 35 pF, RL = 50 Ω, Vs = 2 V, see Figure 25         LOFF, ToISABLE       CL = 35 pF, RL = 50 Ω, Vs = 2 V, see Figure 25         Break-Before-Make Time Delay, tD       CL = 35 pF, RL = 50 Ω, Vs = 2 V, see Figure 25         PC to GPO Propagation Delay, tH, tL (ADG799G only)       FL = 50 Ω, Vs = 2 V, see Figure 26         Off Isolation       F = 10 MHz, RL = 50 Ω, see Figure 28         Channel-to-Channel Crosstalk       F = 10 MHz, RL = 50 Ω, see Figure 29         Same Crosspoint Switch       Different Crosspoint Switch         Different Crosspoint Switch       RL = 50 Ω, see Figure 27         RL = 100 Ω       CL = 1 nF, Vs = 0 V, see Figure 30         CloFF       CDIOFF         CDIOFF       CDIOFF         CDIOFF       CCIR330 test signal         LOGIC INPUTS³       A0, A1, A2 Pins         Input High Voltage, VINL       Input Low Voltage, VINL         Input Current, INL or INH       VIN = 0 V to VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 0.55                   | Ω           |
| Source Off Leakage (I <sub>SIOFF</sub> ) Drain Off Leakage (I <sub>DIONFI</sub> ) Channel On Leakage (I <sub>DIONFI</sub> ) Source Off Leakage (I <sub>DIONFI</sub> ) Channel On Leakage (I <sub>DIONFI</sub> ) Source Off Leakage Off Leak On Volon Source Off Leak On Volon Source Off Leakage On Volon Source On                                                                                                                                                                                                                                                                                                                                    |                    |                        | 1           |
| Drain Off Leakage (I <sub>D(ON)</sub> , I <sub>S(ON)</sub> )  Channel On Leakage (I <sub>D(ON)</sub> , I <sub>S(ON)</sub> )  V <sub>D</sub> = V <sub>5</sub> = 4 V/1 V, see Figure 23  V <sub>D</sub> = V <sub>5</sub> = 4 V/1 V, see Figure 24  DYNAMIC CHARACTERISTICS <sup>3</sup> t <sub>ON</sub> , t <sub>ENABLE</sub> t <sub>OFF</sub> , t <sub>DISABLE</sub> C <sub>L</sub> = 35 pF, R <sub>L</sub> = 50 Ω, V <sub>S</sub> = 2 V, see Figure 25  Break-Before-Make Time Delay, t <sub>D</sub> I <sup>2</sup> C to GPO Propagation Delay, t <sub>H</sub> , t <sub>L</sub> (ADG799G only)  Off Isolation  Channel-to-Channel Crosstalk  Same Crosspoint Switch  Different Crosspoint Switch  Different Crosspoint Switch  Charge Injection  C <sub>S(OFF)</sub> C <sub>D(ON)</sub> , C <sub>S(ON)</sub> Power Supply Rejection Ratio, PSSR  Differential Gain Error  Differential Phase Error  LOGIC INPUTS <sup>3</sup> A0, A1, A2 Pins  Input High Voltage, V <sub>INL</sub> Input Current, I <sub>INL</sub> or I <sub>INL</sub> V <sub>IN</sub> = 0 V to V <sub>DD</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.2               | 25                     | nA          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ±0.2               |                        | nA          |
| DYNAMIC CHARACTERISTICS³ $to_{N}, t_{ENABLE} \\ to_{FF}, t_{DISABLE} \\ Break-Before-Make Time Delay, to \\ I^2C to GPO Propagation Delay, t_{Fr}, t_L (ADG799G only) \\ Off Isolation \\ Channel-to-Channel Crosstalk \\ Same Crosspoint Switch \\ Different Crosspoint Switch \\ Different Crosspoint Switch \\ CL = 35 pF, R_L = 50 \Omega, V_S = 2 V, see Figure 25 C_L = 35 pF, R_L = 50 \Omega, V_{S1} = V_{S2} = 2 V, see Figure 25 \\ C_L = 35 pF, R_L = 50 \Omega, V_{S1} = V_{S2} = 2 V, see Figure 26 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 28 \\ f = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 29 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10 MHz, R_L = 50 \Omega, see Figure 20 \\ I = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0.2               |                        | nA          |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ±0.2               |                        | +           |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 184                | 240                    | ns          |
| Break-Before-Make Time Delay, $t_D$   $I^2C$ to GPO Propagation Delay, $t_H$ , $t_L$ (ADG799G only)   Off Isolation   $f = 10$ MHz, $R_L = 50$ $\Omega$ , see Figure 26   $f = 10$ MHz, $R_L = 50$ $\Omega$ , see Figure 28   $f = 10$ MHz, $R_L = 50$ $\Omega$ , see Figure 29   Same Crosspoint Switch   Different Crosspoint Switch   Different Crosspoint Switch   $R_L = 50$ $\Omega$ , see Figure 27   $R_L = 100$ $\Omega$                                                                                                                                                                                                      | 180                |                        | ns          |
| I²C to GPO Propagation Delay, t <sub>H</sub> , t <sub>L</sub> (ADG799G only) $f = 10 \text{ MHz}$ , $R_L = 50 \Omega$ , see Figure 28Channel-to-Channel Crosstalk $f = 10 \text{ MHz}$ , $R_L = 50 \Omega$ , see Figure 29Same Crosspoint SwitchDifferent Crosspoint Switch—3 dB Bandwidth $R_L = 50 \Omega$ , see Figure 27 $THD + N$ $R_L = 100 \Omega$ Charge Injection $C_L = 1 \text{ nF}$ , $V_S = 0 \text{ V}$ , see Figure 30 $C_{S(OFF)}$ $C_{D(ON)}$ , $C_{S(ON)}$ Power Supply Rejection Ratio, PSSR $f = 20 \text{ kHz}$ Differential Gain ErrorCCIR330 test signalDifferential Phase ErrorCCIR330 test signalLOGIC INPUTS³A0, A1, A2 PinsInput High Voltage, $V_{INH}$ Input Low Voltage, $V_{INL}$ Input Low Voltage, $V_{INL}$ $V_{IN} = 0 \text{ V to } V_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                  | 233                    | ns          |
| Off Isolation $f = 10 \text{ MHz}, R_L = 50 \ \Omega, \text{ see Figure 28}$ $Channel-to-Channel Crosstalk$ $Same Crosspoint Switch$ $Different Crosspoint Switch$ $-3 \text{ dB Bandwidth}$ $THD + N$ $Charge Injection$ $C_{S(OFF)}$ $C_{D(OFF)}$ $C_{D(ON)}, C_{S(ON)}$ $Power Supply Rejection Ratio, PSSR$ $Differential Gain Error$ $Differential Phase Error$ $LOGIC INPUTS^3$ $A0, A1, A2 \text{ Pins}$ $Input High Voltage, V_{INL}$ $Input Current, I_{INL} \text{ or } I_{INH}$ $Input Current, I_{INL} \text{ or } I_{INH}$ $F = 10 \text{ MHz}, R_L = 50 \ \Omega, \text{ see Figure 29}$ $R_L = 50 \ \Omega, \text{ see Figure 29}$ $R_L = 50 \ \Omega, \text{ see Figure 29}$ $R_L = 50 \ \Omega, \text{ see Figure 29}$ $R_L = 50 \ \Omega, \text{ see Figure 29}$ $R_L = 50 \ \Omega, \text{ see Figure 29}$ $R_L = 50 \ \Omega, \text{ see Figure 29}$ $R_L = 50 \ \Omega, \text{ see Figure 29}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$ $C_L = 1 \text{ nF, Vs} = 0 \text{ V, see Figure 30}$                                                                                                                                                                                                                                                                                                                                                                                                      | 3                  | 130                    | ns          |
| Channel-to-Channel Crosstalk Same Crosspoint Switch Different Crosspoint Switch $R_L = 50 \Omega$ , see Figure 29 $R_L = 50 \Omega$ , see Figure 29 $R_L = 50 \Omega$ , see Figure 29 $R_L = 50 \Omega$ , see Figure 27 $R_L = 100 \Omega$ $R_L $ | 60                 |                        |             |
| $Same Crosspoint Switch \\ Different Crosspoint Switch \\ -3 dB Bandwidth \\ R_L = 50  \Omega, see Figure 27 \\ THD + N \\ Charge Injection \\ C_{S(OFF)} \\ C_{D(OFF)} \\ C_{D(ON),  C_{S(ON)}} \\ Power Supply Rejection Ratio, PSSR \\ Differential Gain Error \\ Differential Phase Error \\ CCIR330 test signal \\ CCIR330 test signal \\ CCIR330 test signal \\ CCIR330 test signal \\ COGIC INPUTS^3 \\ A0, A1, A2 Pins \\ Input High Voltage, V_{INH} \\ Input Low Voltage, V_{INL} \\ Input Current, I_{INL} or I_{INH} \\ V_{IN} = 0  V  to  V_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -60                |                        | dB          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                 |                        | 10          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -50                |                        | dB          |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -80                |                        | dB          |
| $\begin{array}{c} \text{Charge Injection} & \text{C}_{L} = 1 \text{ nF, V}_{S} = 0 \text{ V, see Figure 30} \\ \\ \text{C}_{S(OFF)} & \\ \text{C}_{D(OFF)} & \\ \text{C}_{D(ON)}, \text{C}_{S(ON)} & \\ \\ \text{Power Supply Rejection Ratio, PSSR} & f = 20 \text{ kHz} \\ \\ \text{Differential Gain Error} & \text{CCIR330 test signal} \\ \\ \text{Differential Phase Error} & \text{CCIR330 test signal} \\ \\ \text{LOGIC INPUTS}^{3} & \\ \text{A0, A1, A2 Pins} & \\ \\ \text{Input High Voltage, V}_{INH} & \\ \\ \text{Input Low Voltage, V}_{INL} & \\ \\ \text{Input Current, I}_{INL} \text{ or I}_{INH} & \text{V}_{IN} = 0 \text{ V to V}_{DD} \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 230                |                        | MHz         |
| $\begin{array}{c} C_{S(OFF)} \\ C_{D(OFF)} \\ C_{D(ON)}, C_{S(ON)} \\ \\ Power Supply Rejection Ratio, PSSR \\ Power Supply Rejection Ratio, PSSR \\ Differential Gain Error \\ Differential Phase Error \\ \\ CCIR330 test signal \\ \\ COIST INPUTS^3 \\ A0, A1, A2 Pins \\ Input High Voltage, V_{INH} \\ Input Low Voltage, V_{INL} \\ Input Current, I_{INL} or I_{INH} \\ \\ V_{IN} = 0 \ V \ to \ V_{DD} \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14               |                        | %           |
| $\begin{array}{c} C_{\text{D(OFF)}} \\ C_{\text{D(ON)}}, C_{\text{S(ON)}} \\ \text{Power Supply Rejection Ratio, PSSR} \\ \text{Differential Gain Error} \\ \text{Differential Phase Error} \\ \\ \text{CCIR330 test signal} \\ \\ \text{COIR350 test signal} \\ \\ C$                                                                                                                                                                                                                                 | 4                  |                        | рC          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                 |                        | pF          |
| Power Supply Rejection Ratio, PSSR $f = 20 \text{ kHz}$ Differential Gain Error CCIR330 test signal Differential Phase Error CCIR330 test signal  LOGIC INPUTS³ A0, A1, A2 Pins Input High Voltage, V <sub>INH</sub> Input Low Voltage, V <sub>INL</sub> Input Current, I <sub>INL</sub> or I <sub>INH</sub> $V_{IN} = 0 \text{ V to V}_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                 |                        | pF          |
| Differential Gain Error Differential Phase Error  CCIR330 test signal  CCIR330 test signal  CCIR330 test signal  CCIR330 test signal  2.0  Input High Voltage, V <sub>INH</sub> Input Low Voltage, V <sub>INL</sub> Input Current, I <sub>INL</sub> or I <sub>INH</sub> CCIR330 test signal  CCIR330 test signal  CCIR330 test signal  CVIR330 test signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                 |                        | pF          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                 |                        | dB          |
| LOGIC INPUTS <sup>3</sup> A0, A1, A2 Pins Input High Voltage, $V_{INH}$ Input Low Voltage, $V_{INL}$ Input Current, $I_{INL}$ or $I_{INH}$ $V_{IN} = 0 \text{ V to } V_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.56               | 1                      | %           |
| A0, A1, A2 Pins Input High Voltage, $V_{INH}$ 2.0 Input Low Voltage, $V_{INL}$ Input Current, $I_{INL}$ or $I_{INH}$ $V_{IN} = 0 \text{ V to } V_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.79               | 1                      | 0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                        |             |
| Input Low Voltage, $V_{INL}$ Input Current, $I_{INL}$ or $I_{INH}$ $V_{IN} = 0 \text{ V to } V_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                        |             |
| Input Current, $I_{INL}$ or $I_{INH}$ $V_{IN} = 0 \text{ V to } V_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                        | V           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 0.8                    | V           |
| Input Canacitance Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00               | 5 ±1                   | μΑ          |
| input Capacitanice, Cin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                  |                        | рF          |
| SCL, SDA Pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                        |             |
| Input High Voltage, V <sub>INH</sub> 0.7 × V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                  | $V_{DD} + 0.3$         | V           |
| Input Low Voltage, V <sub>INL</sub> −0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | $0.3 \times V_{DD}$    | V           |
| Input Leakage Current, $I_{IN}$ $V_{IN} = 0 \text{ V to } V_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00               |                        | μΑ          |
| Input Hysteresis 0.05 × V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                        | V           |
| Input Capacitance, C <sub>IN</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                  |                        | pF          |
| LOGIC OUTPUTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                        | <b> </b>    |
| SDA Pin <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                        |             |
| Output Low Voltage, V <sub>OL</sub> I <sub>SINK</sub> = 3 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 0.4                    | V           |
| Isink = 6 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 0.6                    | V           |
| Floating State Leakage Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | ±1                     |             |
| Floating State Cuttern  Floating State Output Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | ± 1                    | μA<br>pF    |

# **Preliminary Technical Data**

| Parameter                            | Conditions                                                           | Min | Typ <sup>1</sup> | Max | Units |
|--------------------------------------|----------------------------------------------------------------------|-----|------------------|-----|-------|
| GPO1 and GPO2 Pins                   |                                                                      |     |                  |     |       |
| Output Low Voltage, Vol              | $I_{LOAD} = 2 \text{ mA}$                                            |     |                  | 0.4 | V     |
| Output High Voltage, V <sub>OH</sub> | $I_{LOAD} = -2 \text{ mA}$                                           | 2.0 |                  |     | V     |
| POWER REQUIREMENTS                   |                                                                      |     |                  |     |       |
| $I_{DD}$                             | Digital inputs = $0 \text{ V or V}_{DD}$ , $I^2C$ interface inactive |     | 0.001            | 1   | μΑ    |
|                                      | $I^2C$ interface active, $f_{SCL} = 400 \text{ kHz}$                 |     |                  | 0.2 | mA    |
|                                      | $I^2C$ interface active, $f_{SCL} = 3.4$ MHz                         |     |                  | 0.7 | mA    |

 $<sup>^1</sup>$  All typical values are at  $T_A=+25^{\circ}\text{C}$ , unless otherwise stated.  $^2$  Guaranteed by initial characterization, not subject to production test.  $^3$  Guaranteed by design, not subject to production test.

# **Preliminary Technical Data**

 $V_{DD}$  = 3 V  $\pm$  10%, GND = 0 V,  $T_{A}$  =  $-40^{\circ} C$  to +85°C, unless otherwise noted.

Table 2.

| Parameter                                                                                 | Conditions                                                                            | Min                  | Typ <sup>1</sup> | Max                 | Units      |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------|------------------|---------------------|------------|
| ANALOG SWITCH                                                                             |                                                                                       |                      |                  |                     |            |
| Analog Signal Range <sup>2</sup>                                                          | $V_S = V_{DD}$ , $R_L = 1 M\Omega$                                                    | 0                    |                  | 2.4                 | V          |
|                                                                                           | $V_S = V_{DD}$ , $R_L = 75 \Omega$                                                    | 0                    |                  | 1.7                 | V          |
| On Resistance, Ron                                                                        | $V_D = 0 \text{ V}$ , $I_{DS} = -10 \text{ mA}$ , see Figure 22                       |                      | 3                | 5.5                 | Ω          |
|                                                                                           | $V_D = 0 \text{ V to } 1 \text{ V}, I_{DS} = -10 \text{ mA}, \text{ see Figure } 22$  |                      |                  | 8                   | Ω          |
| On Resistance Matching Between Channels, ΔR <sub>ON</sub>                                 | $V_D = 0 \text{ V, } I_{DS} = -10 \text{ mA}$                                         |                      | 0.15             | 1.8                 | Ω          |
|                                                                                           | $V_D = 1 \text{ V}, I_{DS} = -10 \text{ mA}$                                          |                      |                  | 2                   | Ω          |
| On Resistance Flatness, R <sub>FLAT(ON)</sub>                                             | $V_D = 0 \text{ V to } 1 \text{ V, } I_{DS} = -10 \text{ mA}$                         |                      | 0.3              | 2.8                 | Ω          |
| LEAKAGE CURRENTS                                                                          |                                                                                       |                      |                  |                     |            |
| Source Off Leakage (I <sub>S(OFF)</sub> )                                                 | $V_D = 2 \text{ V}/1 \text{ V}, V_S = 1 \text{ V}/2 \text{ V}, \text{ see Figure 23}$ |                      | ±0.25            |                     | nA         |
| Drain Off Leakage (I <sub>D(OFF)</sub> )                                                  | $V_D = 2 \text{ V}/1 \text{ V}, V_S = 1 \text{ V}/2 \text{ V}, \text{ see Figure 23}$ |                      | ±0.25            |                     | nA         |
| Channel On Leakage (I <sub>D(ON)</sub> , I <sub>S(ON)</sub> )                             | $V_D = V_S = 2 V/1 V$ , see Figure 24                                                 |                      | ±0.25            |                     | nA         |
| DYNAMIC CHARACTERISTICS <sup>3</sup>                                                      |                                                                                       |                      |                  |                     |            |
| ton, tenable                                                                              | $C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 2 \text{ V, see Figure 25}$             |                      | 203              | 266                 | ns         |
| toff, tdisable                                                                            | $C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 2 \text{ V, see Figure 25}$             |                      | 200              | 260                 | ns         |
| Break-Before-Make Time Delay, t <sub>D</sub>                                              | $C_L = 35 \text{ pF}, R_L = 50 \Omega, V_{S1} = V_{S2} = 2 \text{ V, see Figure 26}$  | 1                    | 3                |                     | ns         |
| I <sup>2</sup> C to GPO Propagation Delay, t <sub>H</sub> , t <sub>L</sub> (ADG799G only) |                                                                                       |                      |                  | 121                 | ns         |
| Off Isolation                                                                             | $f = 10 \text{ MHz}, R_L = 50 \Omega$ , see Figure 28                                 |                      | -60              |                     | dB         |
| Channel-to-Channel Crosstalk                                                              | $f = 10 \text{ MHz}, R_L = 50 \Omega, \text{ see Figure 29}$                          |                      |                  |                     |            |
| Same Crosspoint Switch                                                                    |                                                                                       |                      | -50              |                     | dB         |
| Different Crosspoint Switch                                                               |                                                                                       |                      | -80              |                     | dB         |
| –3 dB Bandwidth                                                                           | $R_L = 50 \Omega$ , see Figure 27                                                     |                      | 210              |                     | MHz        |
| THD + N                                                                                   | $R_L = 100 \Omega$                                                                    |                      | 0.14             |                     | %          |
| Charge Injection                                                                          | $C_L = 1 \text{ nF, V}_S = 0 \text{ V, see Figure 30}$                                |                      | 2                |                     | pC         |
| Cs(OFF)                                                                                   | C <sub>1</sub> = 1111, v <sub>3</sub> = 0 v, see Figure 30                            |                      | 13               |                     | pF         |
| C <sub>D(OFF)</sub>                                                                       |                                                                                       |                      | 17               |                     | pF         |
| CD(ON), CS(ON)                                                                            |                                                                                       |                      | 35               |                     | рF         |
| Power Supply Rejection Ratio, PSSR                                                        | f = 20 kHz                                                                            |                      | 70               |                     | dB         |
| Differential Gain Error                                                                   | CCIR330 test signal                                                                   |                      | 0.66             |                     | %          |
| Differential Phase Error                                                                  | CCIR330 test signal                                                                   |                      | 1                |                     | 0          |
| LOGIC INPUTS                                                                              | CCINDOU test signal                                                                   | -                    | '                |                     |            |
| A0, A1, A2 Pins <sup>3</sup>                                                              |                                                                                       |                      |                  |                     |            |
|                                                                                           |                                                                                       | 2.0                  |                  |                     | V          |
| Input High Voltage, V <sub>INH</sub><br>Input Low Voltage, V <sub>INL</sub>               |                                                                                       | 2.0                  |                  | 0.8                 | V          |
|                                                                                           | $V_{IN} = 0 \text{ V to } V_{DD}$                                                     |                      | 0.005            | ±1                  |            |
| Input Current, I <sub>INL</sub> or I <sub>INH</sub>                                       | VIN = U V LO VDD                                                                      |                      |                  | ±Ι                  | μA         |
| Input Capacitance, C <sub>IN</sub>                                                        |                                                                                       |                      | 3                |                     | pF         |
| SCL, SDA Pins <sup>3</sup>                                                                |                                                                                       | 0.7.4.1/             |                  | V + 0.2             | \ <i>\</i> |
| Input High Voltage, V <sub>INH</sub>                                                      |                                                                                       | $0.7 \times V_{DD}$  |                  | $V_{DD} + 0.3$      | V          |
| Input Low Voltage, V <sub>INL</sub>                                                       | V 0V V                                                                                | -0.3                 | 0.005            | $0.3 \times V_{DD}$ | V          |
| Input Leakage Current, I <sub>IN</sub>                                                    | $V_{IN} = 0 V \text{ to } V_{DD}$                                                     | 0.05 1/              | 0.005            | ±1                  | μΑ         |
| Input Hysteresis                                                                          |                                                                                       | $0.05 \times V_{DD}$ | 2                |                     | ٧ ٦        |
| Input Capacitance, C <sub>IN</sub>                                                        |                                                                                       |                      | 3                |                     | pF         |
| LOGIC OUTPUTS <sup>3</sup>                                                                |                                                                                       |                      |                  |                     |            |
| SDA Pin                                                                                   |                                                                                       |                      |                  |                     |            |
| Output Low Voltage, Vol                                                                   | $I_{SINK} = 3 \text{ mA}$                                                             |                      |                  | 0.4                 | V          |
|                                                                                           | $I_{SINK} = 6 \text{ mA}$                                                             |                      |                  | 0.6                 | V          |
| Floating State Leakage Current                                                            |                                                                                       |                      |                  | ±1                  | μΑ         |
| Floating State Output Capacitance                                                         |                                                                                       |                      | 3                |                     | pF         |

# **Preliminary Technical Data**

| Parameter                            | Conditions                                                           | Min | Typ <sup>1</sup> | Max | Units |
|--------------------------------------|----------------------------------------------------------------------|-----|------------------|-----|-------|
| GPO1 and GPO2 Pins                   |                                                                      |     |                  |     |       |
| Output Low Voltage, Vol              | $I_{LOAD} = 2 \text{ mA}$                                            |     |                  | 0.4 | V     |
| Output High Voltage, V <sub>OH</sub> | $I_{LOAD} = -2 \text{ mA}$                                           | 2.0 |                  |     | ٧     |
| POWER REQUIREMENTS                   |                                                                      |     |                  |     |       |
| I <sub>DD</sub>                      | Digital inputs = $0 \text{ V or V}_{DD}$ , $I^2C$ interface inactive |     | 0.001            | 1   | μΑ    |
|                                      | $I^2C$ interface active, $f_{SCL} = 400 \text{ kHz}$                 |     |                  | 0.1 | mA    |
|                                      | $I^2C$ interface active, $f_{SCL} = 3.4$ MHz                         |     |                  | 0.2 | mA    |

 $<sup>^1</sup>$  All typical values are at  $T_A=+25^{\circ}\text{C}$ , unless otherwise stated.  $^2$  Guaranteed by initial characterization, not subject to production test.  $^3$  Guaranteed by design, not subject to production test.

# **I<sup>2</sup>C TIMING SPECIFICATIONS**

 $V_{DD} = 2.7 \text{ V}$  to 5.5 V; GND = 0 V;  $T_A = -40^{\circ}\text{C}$  to +85°C, unless otherwise noted (see Figure 2 for timing diagram).

Table 3.

| Parameter <sup>1</sup>      | Conditions                 | Min                     | Max  | Unit | Description                                                           |
|-----------------------------|----------------------------|-------------------------|------|------|-----------------------------------------------------------------------|
| f <sub>SCL</sub>            | Standard mode              |                         | 100  | kHz  | Serial clock frequency                                                |
|                             | Fast mode                  |                         | 400  | kHz  |                                                                       |
|                             | High speed mode            |                         |      |      |                                                                       |
|                             | $C_B = 100 pF max$         |                         | 3.4  | MHz  |                                                                       |
|                             | $C_B = 400 \text{ pF max}$ |                         | 1.7  | MHz  |                                                                       |
| t <sub>1</sub>              | Standard mode              | 4                       |      | μs   | t <sub>нідн</sub> , SCL high time                                     |
|                             | Fast mode                  | 0.6                     |      | μs   |                                                                       |
|                             | High speed mode            |                         |      |      |                                                                       |
|                             | $C_B = 100 \text{ pF max}$ | 60                      |      | ns   |                                                                       |
|                             | $C_B = 400 \text{ pF max}$ | 120                     |      | ns   |                                                                       |
| t <sub>2</sub>              | Standard mode              | 4.7                     |      | μs   | t <sub>LOW</sub> , SCL low time                                       |
|                             | Fast mode                  | 1.3                     |      | μs   |                                                                       |
|                             | High speed mode            |                         |      |      |                                                                       |
|                             | $C_B = 100 \text{ pF max}$ | 160                     |      | ns   |                                                                       |
|                             | $C_B = 400 \text{ pF max}$ | 320                     |      | ns   |                                                                       |
| t <sub>3</sub>              | Standard mode              | 250                     |      | ns   | t <sub>SU;DAT</sub> , data setup time                                 |
|                             | Fast mode                  | 100                     |      | ns   |                                                                       |
|                             | High speed mode            | 10                      |      | ns   |                                                                       |
| t <sub>4</sub> <sup>2</sup> | Standard mode              | 0                       | 3.45 | μs   | t <sub>HD;DAT</sub> , data hold time                                  |
|                             | Fast mode                  | 0                       | 0.9  | μs   |                                                                       |
|                             | High speed mode            |                         |      |      |                                                                       |
|                             | $C_B = 100 \text{ pF max}$ | 0                       | 703  | ns   |                                                                       |
|                             | $C_B = 400 \text{ pF max}$ | 0                       | 150  | ns   |                                                                       |
| <b>t</b> <sub>5</sub>       | Standard mode              | 4.7                     |      | μs   | t <sub>SU;STA</sub> , setup time for a repeated start condition       |
|                             | Fast mode                  | 0.6                     |      | μs   |                                                                       |
|                             | High speed mode            | 160                     |      | ns   |                                                                       |
| t <sub>6</sub>              | Standard mode              | 4                       |      | μs   | t <sub>HD;STA</sub> , hold time (repeated) start condition            |
|                             | Fast mode                  | 0.6                     |      | μs   |                                                                       |
|                             | High speed mode            | 160                     |      | ns   |                                                                       |
| t <sub>7</sub>              | Standard mode              | 4.7                     |      | μs   | t <sub>BUF</sub> , bus free time between a stop and a start condition |
|                             | Fast mode                  | 1.3                     |      | μs   |                                                                       |
| t <sub>8</sub>              | Standard mode              | 4                       |      | μs   | t <sub>SU;STO</sub> , setup time for stop condition                   |
|                             | Fast mode                  | 0.6                     |      | μs   |                                                                       |
|                             | High speed mode            | 160                     |      | ns   |                                                                       |
| t <sub>9</sub>              | Standard mode              |                         | 1000 | ns   | t <sub>RDA</sub> , rise time of SDA signal                            |
|                             | Fast mode                  | 20 + 0.1 C <sub>B</sub> | 300  | ns   |                                                                       |
|                             | High speed mode            |                         |      |      |                                                                       |
|                             | $C_B = 100 pF max$         | 10                      | 80   | ns   |                                                                       |
|                             | $C_B = 400 \text{ pF max}$ | 20                      | 160  | ns   |                                                                       |
| t <sub>10</sub>             | Standard mode              |                         | 300  | ns   | t <sub>FDA</sub> , fall time of SDA signal                            |
|                             | Fast mode                  | 20 + 0.1 C <sub>B</sub> | 300  | ns   |                                                                       |
|                             | High speed mode            |                         |      |      |                                                                       |
|                             | $C_B = 100 pF max$         | 10                      | 80   | ns   |                                                                       |
|                             | $C_B = 400 \text{ pF max}$ | 20                      | 160  | ns   |                                                                       |
| t <sub>11</sub>             | Standard mode              |                         | 1000 | ns   | t <sub>RCL</sub> , rise time of SCL signal                            |
|                             | Fast mode                  | 20 + 0.1 C <sub>B</sub> | 300  | ns   |                                                                       |
|                             | High speed mode            |                         |      |      |                                                                       |
|                             | $C_B = 100 \text{ pF max}$ | 10                      | 40   | ns   |                                                                       |
|                             | $C_B = 400 \text{ pF max}$ | 20                      | 80   | ns   |                                                                       |

| Parameter <sup>1</sup> | Conditions                 | Min                     | Max  | Unit | Description                                                                            |
|------------------------|----------------------------|-------------------------|------|------|----------------------------------------------------------------------------------------|
| t <sub>11A</sub>       | Standard mode              |                         | 1000 | ns   | t <sub>RCL1</sub> , rise time of SCL signal after a repeated start condition and after |
|                        | Fast mode                  | 20 + 0.1 C <sub>B</sub> | 300  | ns   | an acknowledge bit.                                                                    |
|                        | High speed mode            |                         |      |      |                                                                                        |
|                        | $C_B = 100 pF max$         | 10                      | 80   | ns   |                                                                                        |
|                        | $C_B = 400 \text{ pF max}$ | 20                      | 160  | ns   |                                                                                        |
| t <sub>12</sub>        | Standard mode              |                         | 300  | ns   | t <sub>FCL</sub> , fall time of SCL signal                                             |
|                        | Fast mode                  | 20 + 0.1 C <sub>B</sub> | 300  | ns   |                                                                                        |
|                        | High speed mode            |                         |      |      |                                                                                        |
|                        | $C_B = 100 pF max$         | 10                      | 40   | ns   |                                                                                        |
|                        | $C_B = 400 \text{ pF max}$ | 20                      | 80   | ns   |                                                                                        |
| t <sub>SP</sub>        | Fast mode                  | 0                       | 50   | ns   | Pulse width of suppressed spike                                                        |
|                        | High speed mode            | 0                       | 10   | ns   |                                                                                        |

 $<sup>^1</sup>$  Guaranteed by initial characterization. CB refers to capacitive load on the bus line, tr and tf measured between 0.3 V<sub>DD</sub> and 0.7 V<sub>DD</sub>.  $^2$  A device must provide a data hold time for SDA in order to bridge the undefined region of the SCL falling edge.

# **TIMING DIAGRAM**

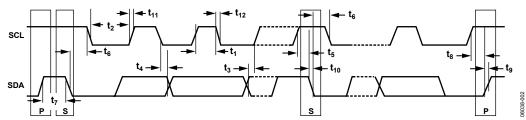



Figure 2. Timing Diagram for 2-Wire Serial Interface

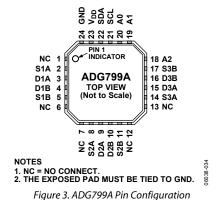
# **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

| Table 4.                                 |                                                               |
|------------------------------------------|---------------------------------------------------------------|
| Parameter                                | Rating                                                        |
| V <sub>DD</sub> to GND                   | −0.3 V to +6 V                                                |
| Analog, Digital Inputs                   | $-0.3$ V to $V_{DD}$ + 0.3 V or 30 mA, whichever occurs first |
| Continuous Current, S or D Pins          | 100 mA                                                        |
| Peak Current, S or D Pins                | 300 mA (pulsed at 1 ms,<br>10% duty cycle max)                |
| Operating Temperature Range              |                                                               |
| Industrial (B Version)                   | −40°C to +85°C                                                |
| Storage Temperature Range                | −65°C to +150°C                                               |
| Junction Temperature                     | 150°C                                                         |
| $\theta_{JA}$ Thermal Impedance          |                                                               |
| 24-Lead LFCSP                            | 30°C/W                                                        |
| Lead Temperature, Soldering (10 sec)     | 300°C                                                         |
| IR Reflow, Peak Temperature<br>(<20 sec) | 260°C                                                         |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Only one absolute maximum rating can be applied at any one time

# **ESD CAUTION**

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



# PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



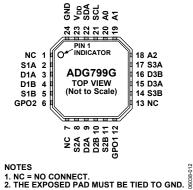



Figure 4. ADG799G Pin Configuration

**Table 5. Pin Function Descriptions** 

| Pin No. | Mnemonic        | Function                                                                                                                                                   |
|---------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | NC              | Not internally connected.                                                                                                                                  |
| 2       | S1A             | A-Side Source Terminal for Crosspoint Switch 1. Can be an input or output.                                                                                 |
| 3       | D1A             | A-Side Drain Terminal for Crosspoint Switch 1. Can be an input or output.                                                                                  |
| 4       | D1B             | B-Side Drain Terminal for Crosspoint Switch 1. Can be an input or output.                                                                                  |
| 5       | S1B             | B-Side Source Terminal for Crosspoint Switch 1. Can be an input or output.                                                                                 |
| 6       | NC/GPO2         | Not internally connected (for the ADG799A) / General-Purpose Logic Output 2 (for the ADG799G).                                                             |
| 7       | NC              | Not internally connected.                                                                                                                                  |
| 8       | S2A             | A-Side Source Terminal for Crosspoint Switch 2. Can be an input or output.                                                                                 |
| 9       | D2A             | A-Side Drain Terminal for Crosspoint Switch 2. Can be an input or output.                                                                                  |
| 10      | D2B             | B-Side Drain Terminal for Crosspoint Switch 2. Can be an input or output.                                                                                  |
| 11      | S2B             | B-Side Source Terminal for Crosspoint Switch 2. Can be an input or output.                                                                                 |
| 12      | NC/GPO1         | Not internally connected (for the ADG799A) / General-Purpose Logic Output 1 (for the ADG799G).                                                             |
| 13      | NC              | Not internally connected.                                                                                                                                  |
| 14      | S3B             | B-Side Source Terminal for Crosspoint Switch 3. Can be an input or output.                                                                                 |
| 15      | D3A             | A-Side Drain Terminal for Crosspoint Switch 3. Can be an input or output                                                                                   |
| 16      | D3B             | B-Side Drain Terminal for Crosspoint Switch 3. Can be an input or output.                                                                                  |
| 17      | S3A             | A-Side Source Terminal for Crosspoint Switch 3. Can be an input or output.                                                                                 |
| 18      | A2              | Logic Input. Sets Bit A2 from the least significant bits of the 7-bit slave address.                                                                       |
| 19      | A1              | Logic Input. Sets Bit A1 from the least significant bits of the 7-bit slave address.                                                                       |
| 20      | A0              | Logic Input. Sets Bit A0 from the least significant bits of the 7-bit slave address.                                                                       |
| 21      | SCL             | Digital Input, Serial Clock Line. Open drain input that is used in conjunction with SDA to clock data into the device. External pull-up resistor required. |
| 22      | SDA             | Digital Input/Output. Bidirectional open drain data line. External pull-up resistor required.                                                              |
| 23      | V <sub>DD</sub> | Positive Power Supply Input.                                                                                                                               |
| 24      | GND             | Ground (0 V) Reference.                                                                                                                                    |

# TYPICAL PERFORMANCE CHARACTERISTICS

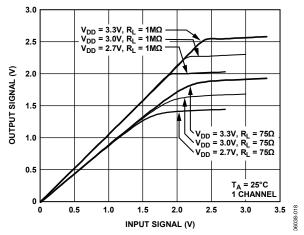



Figure 5. Analog Signal Range, 3 V Supply

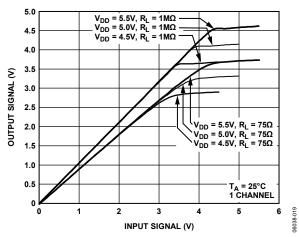



Figure 6. Analog Signal Range, 5 V Supply

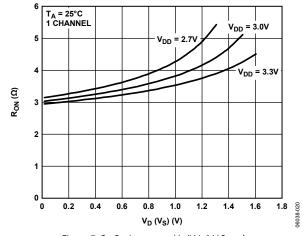



Figure 7. On Resistance vs.  $V_D$  ( $V_S$ ), 3 V Supply

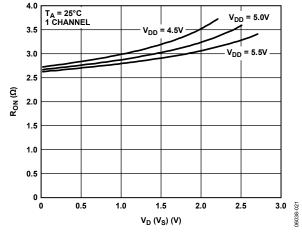



Figure 8. On Resistance vs.  $V_D$  ( $V_S$ ), 5 V Supply

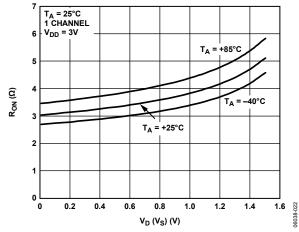



Figure 9. On Resistance vs.  $V_D(V_S)$  for Various Temperatures, 3 V Supply

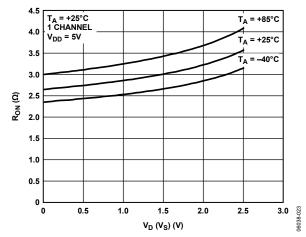



Figure 10. On Resistance vs.  $V_D$  ( $V_S$ ) for Various Temperatures, 5 V Supply

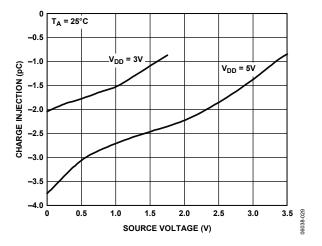



Figure 11. Charge Injection vs. Source Voltage

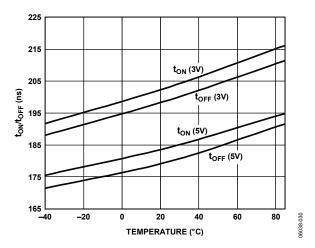



Figure 12.  $T_{ON}/T_{OFF}$  vs. Temperature

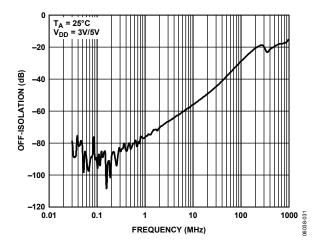



Figure 13. Off Isolation vs. Frequency

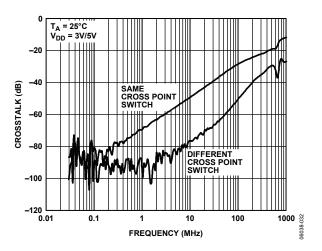



Figure 14. Crosstalk vs. Frequency

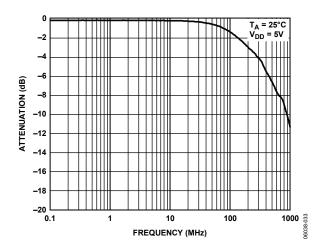



Figure 15. Bandwidth

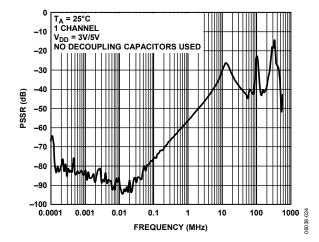



Figure 16. PSSR vs. Frequency

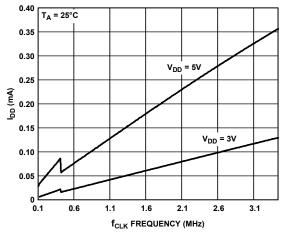



Figure 17. IDD vs. fclk frequency

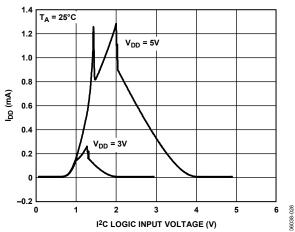



Figure 18. I<sub>DD</sub> vs. I<sup>2</sup>C Logic Input Voltage (SDA, SCL)

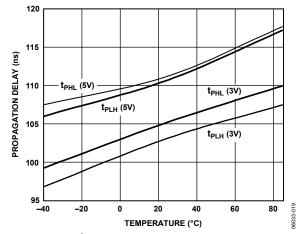



Figure 19. I<sup>2</sup>C to GPO Propagation Delay vs. Temperature (ADG799G Only)

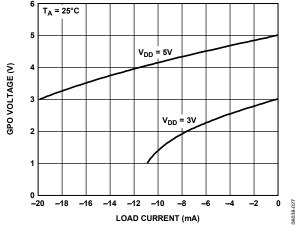



Figure 20. GPO V<sub>OH</sub> vs. Load Current

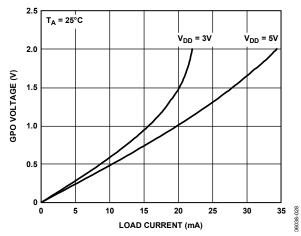



Figure 21. GPO Vol vs. Load Current

# **TEST CIRCUITS**

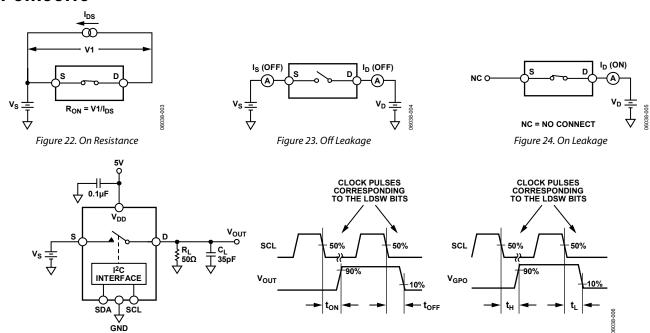



Figure 25. Switching Times




Figure 26. Break-Before-Make Time Delay

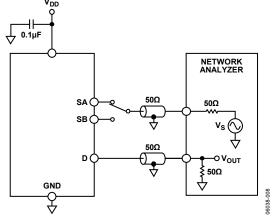



Figure 27. Bandwidth

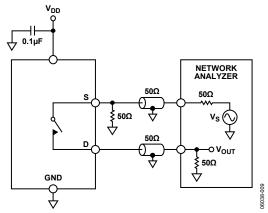



Figure 28. Off Isolation



Figure 29. Channel-to-Channel Crosstalk

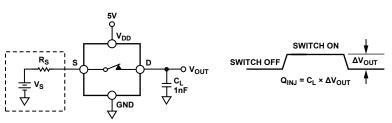



Figure 30. Charge Injection

# **TERMINOLOGY**

## On Resistance (RoN)

The series on-channel resistance measured between the S and D pins.

## On Resistance Match (ΔR<sub>ON</sub>)

The channel-to-channel matching of on resistance when channels are operated under identical conditions.

## On Resistance Flatness (R<sub>FLAT(ON)</sub>)

The variation of on resistance over the specified range produced by the specified analog input voltage change with a constant load current.

# Channel Off Leakage (IOFF)

The sum of leakage currents into or out of an off channel input.

# Channel On Leakage (IoN)

The current loss/gain through an on-channel resistance, creating a voltage offset across the device.

# Input Leakage Current (IIN, IINL, IINH)

The current flowing into a digital input when a specified low level or high level voltage is applied to that input.

# Input/Output Off Capacitance (COFF)

The capacitance between an analog input and ground when the switch channel is off.

## Input/Output On Capacitance (CoN)

The capacitance between the inputs or outputs and ground when the switch channel is on.

## Digital Input Capacitance (C<sub>IN</sub>)

The capacitance between a digital input and ground.

# Output On Switching Time (ton)

The time required for the switch channel to close. The time is measured from 50% of the falling edge of the LDSW bit to the time the output reaches 90% of the final value.

# Output Off Switching Time (toff)

The time required for the switch to open. The time is measured from 50% of the falling edge of the LDSW bit to the time the output reaches 10% of the final value.

# I<sup>2</sup>C to GPO propagation delay (t<sub>H</sub>, t<sub>L</sub>)

The time required for the logic value at the GPO pin to settle after loading a GPO command. The time is measured from 50% of the falling edge of the LDSW bit to the time the output reaches 90% of the final value for high and 10% for low.

# Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

## -3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB.

## Off Isolation

The measure of unwanted signal coupling through an off switch.

#### Crosstalk

The measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

## **Charge Injection**

The measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

#### **Differential Gain Error**

The measure of how much color saturation shift occurs when the luminance level changes. Both attenuation and amplification can occur; therefore, the largest amplitude change between any two levels is specified and expressed in %.

## **Differential Phase Error**

The measure of how much hue shift occurs when the luminance level changes. It can be a negative or positive value and is expressed in degrees of subcarrier phase.

# Input High Voltage (V<sub>INH</sub>)

The minimum input voltage for Logic 1.

# Input Low Voltage ( $V_{\rm INL}$ )

The maximum input voltage for Logic 0.

## Output High Voltage (VOH)

The minimum output voltage for Logic 1.

# Output Low Voltage (Vol.)

The maximum output voltage for Logic 0.

#### $I_{DD}$

Positive supply current.

# THEORY OF OPERATION

The ADG799A/ADG799G are monolithic CMOS device comprising three 2x2 crosspoint switches controllable via a standard I<sup>2</sup>C serial interface. The CMOS process provides ultralow power dissipation, yet offers high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range, and wide bandwidth ensures excellent linearity and low distortion. These features, combined with a wide input signal range, make the ADG799A/ADG799G an ideal switching solution for a wide range of TV applications.

The switches conduct equally well in both directions when on. In the off condition, signal levels up to the supplies are blocked. The integrated serial I<sup>2</sup>C interface controls the operation of the crosspoint switches (ADG799A/ADG799G) and general-purpose logic pins (ADG799G only).

The ADG799A/ADG799G have many attractive features, such as the ability to individually control each multiplexer, the option of reading back the status of any switch. The ADG799G has two general-purpose logic output pins controllable through the I<sup>2</sup>C interface. The following sections describe these features in more detail.

# **1<sup>2</sup>C SERIAL INTERFACE**

The ADG799A/ADG799G are controlled via an I<sup>2</sup>C-compatible serial bus interface (refer to the *I*<sup>2</sup>C-Bus Specification available from Philips Semiconductor) that allows the part to operate as a slave device (no clock is generated by the ADG799A/ADG799G). The communication protocol between the I<sup>2</sup>C master and the device operates as follows:

- 1. The master initiates data transfer by establishing a start condition (defined as a high-to-low transition on the SDA line while SCL is high). This indicates that an address/data stream follows. All slave devices connected to the bus respond to the start condition and shift in the next eight bits, consisting of a seven bit address (MSB first) plus an R/W bit. This bit determines the direction of the data flow during the communication between the master and the addressed slave device.
- 2. The slave device whose address corresponds to the transmitted address responds by pulling the SDA line low during the ninth clock pulse (this is known as the acknowledge bit).
- 3. At this stage, all other devices on the bus remain idle while the selected device waits for data to be written to, or read from, its serial register. If the  $R/\overline{W}$  bit is set high, the master reads from the slave device. However, if the  $R/\overline{W}$  bit is set low, the master writes to the slave device.

- 4. Data transmits over the serial bus in sequences of nine clock pulses (eight data bits followed by an acknowledge bit). The transitions on the SDA line must occur during the low period of the clock signal, SCL, and remain stable during the high period of SCL. Otherwise, a low-to-high transition when the clock signal is high can be interpreted as a stop event that ends the communication between the master and the addressed slave device.
- 5. After transferring all data bytes, the master establishes a stop condition, defined as a low-to-high transition on the SDA line while SCL is high. In write mode, the master pulls the SDA line high during the 10<sup>th</sup> clock pulse to establish a stop condition. In read mode, the master issues a no acknowledge for the ninth clock pulse (the SDA line remains high). The master then brings the SDA line low before the 10<sup>th</sup> clock pulse, and then high during the 10<sup>th</sup> clock pulse to establish a stop condition.

## I<sup>2</sup>C ADDRESS

The ADG799A/ADG799G each have a seven-bit  $I^2C$  address. The four most significant bits are internally hardwired while the last three bits (A0, A1, and A2) are user-adjustable. This allows the user to connect up to eight ADG799A/ADG799Gs to the same bus. Table 6 shows the configuration of the seven-bit address.

Table 6. Seven-Bit I<sup>2</sup>C Address Bit Configuration

| IVIOD |   |   |   |    |    | LDD |
|-------|---|---|---|----|----|-----|
| 1 (   | 0 | 1 | 0 | A2 | A1 | A0  |

# **WRITE OPERATION**

When writing to the ADG799A/ADG799G, the user must begin with an address byte and  $R/\overline{W}$  bit. Next, the switch acknowledges that it is prepared to receive data by pulling SDA low. Data is loaded into the device as a 16-bit word under the control of a serial clock input, SCL. Figure 31 illustrates the entire write sequence for the ADG799A/ADG799G. The first data byte (AX7 to AX0) controls the status of the crosspoint switches and the GPO pins, while the LDSW and RESTB bits from the second byte controls the operation mode of the device. Table 7 shows a list of all commands supported by the ADG799A/ADG799G with the corresponding byte that needs to be loaded during a write operation.

To achieve the desired configuration, one or more commands can be loaded into the device. Any combination of the commands listed in Table 7 can be used with the following restrictions:

- The commands referring to more than one switch will overwrite any previous command.
- When a sequence of successive commands affect the same element (that is, the switch or GPO pin), only the last command is executed.

#### **LDSW BIT**

The LDSW bit allows the user to control the way the device executes the commands loaded during the write operations. The ADG799A/ADG799G executes all the commands loaded between two successive write operations that have set the LDSW bit high.

Setting the LDSW high for every write cycle ensures that the device executes the command right after the LDSW bit was loaded into the device. This setting can be used when the desired configuration can be achieved by sending a single command or when the switches and/or GPO pins are not required to be updated at the same time. When the desired configuration requires multiple commands with simultaneous update, the LDSW bit should be set low while loading the commands except the last one when the LDSW bit should be set high. Once the last command with LDSW=High is loaded, the device will execute all commands received since the last update simultaneously.

## **POWER ON/SOFTWARE RESET**

The ADG799A/ADG799G has a software reset function implemented by the RESETB bit from the second data byte written to the device. For normal operation of the crosspoint switch and GPO pins, this bit should be set high. When RESETB = low or after power-up, the switches from all crosspoint switch pins are turned off (open) and the GPO pins are set low.

## **READ OPERATION**

When reading data back from the ADG799A/ADG799G, the user must begin with an address byte and  $R/\overline{W}$  bit. The switch then acknowledges that it is prepared to transmit data by pulling SDA low. Following this acknowledgement, the ADG799A/ADG799G transmits two bytes on the next clock edges. These bytes contain the status of the switches, and each byte is followed by an acknowledge bit. A logic high bit represents a switch in the on (close) state while a low represents a switch in the off (open) state. For the GPO pins (ADG799G only), the bit represents the logic value of the pin. Figure 32 illustrates the entire read sequence.

The bit maps accompanying Figure 32 show the relationship between the elements of the ADG799A and ADG799G (that it, the switches and GPO pins) and the bits that represent their status after a completed read operation.

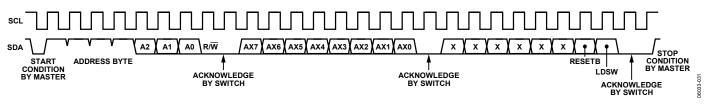



Figure 31. ADG799A/ADG799G Write Operation

## ADG799A Bit Map

| RB15    | RB14    | RB13    | RB12    | RB11    | RB10    | RB9     | RB8     | RB7     | RB6     | RB5     | RB4     | RB3 | RB2 | RB1 | RB0 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----|-----|-----|-----|
| S1A/D1A | S1B/D1A | S1A/D1B | S1B/D1B | S2A/D2A | S2B/D2A | S2A/D2B | S2B/D2B | S3A/D3A | S3B/D3A | S3A/D3B | S3B/D3B | -   | -   | -   | -   |

# ADG799G Bit Map

| RB15    | RB14    | RB13    | RB12    | RB11    | RB10    | RB9     | RB8     | RB7     | RB6     | RB5     | RB4     | RB3  | RB2  | RB1 | RB0 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|------|-----|-----|
| S1A/D1A | S1B/D1A | S1A/D1B | S1B/D1B | S2A/D2A | S2B/D2A | S2A/D2B | S2B/D2B | S3A/D3A | S3B/D3A | S3A/D3B | S3B/D3B | GPO1 | GPO2 | -   | -   |

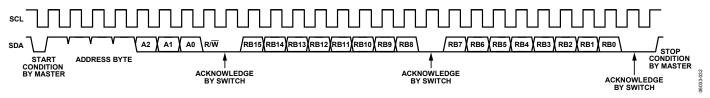



Figure 32. ADG799A/ADG799G Read Operation

Table 7. ADG799A/ADG799G Command list

| X6 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Addressed Switch /GPO Pin  S1A/D1A, S1B/D1B, S2A/D2A, S2B/D2B, S3A/D3A, S3B/D3B off S1A/D1A, S1B/D1B, S2A/D2A, S2B/D2B, S3A/D3A, S3B/D3B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|----|------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | 0<br>0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0                                                   | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|    | 1<br>1<br>1<br>1<br>1<br>1                     | 0<br>0<br>0<br>0                                              | 0 0 0                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1A, S1B/D1B, S2A/D2A, S2B/D2B, S3A/D3A, S3B/D3B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|    | 1<br>1<br>1<br>1<br>1                          | 0<br>0<br>0<br>0                                              | 0                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$1A/D1A, \$1B/D1B, \$2A/D2A, \$2B/D2B, \$3A/D3A, \$3B/D3B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|    | 1<br>1<br>1<br>1                               | 0 0 0                                                         | 0                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1B, S1B/D1A, S2A/D2B, S2B/D2A, S3A/D3B, S3B/D3A off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|    | 1<br>1<br>1<br>1                               | 0                                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1B, S1B/D1A, S2A/D2B, S2B/D2A, S3A/D3B, S3B/D3A on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|    | 1<br>1<br>1                                    | 0                                                             | Λ                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1A and S1A/D1B, S2A/D2A and S2A/D2B, S3A/D3A and S3A/D3B off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|    | 1<br>1                                         | -                                                             | U                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1A and S1A/D1B, S2A/D2A and S2A/D2B, S3A/D3A and S3A/D3B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|    | 1                                              |                                                               | 0                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1B/D1A and S1B/D1B, S2B/D2A and S2B/D2B, S3B/D3A and S3B/D3B off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|    |                                                | 0                                                             | 0                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1B/D1A and S1B/D1B, S2B/D2A and S2B/D2B, S3B/D3A and S3B/D3B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|    | 1                                              | 0                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1A and S1B/D1A, S2A/D2A and S2B/D2A, S3A/D3A and S3B/D3A off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|    | •                                              | 0                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1A and S1B/D1A, S2A/D2A and S2B/D2A, S3A/D3A and S3B/D3A on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|    | 1                                              | 0                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1B and S1B/D1B, S2A/D2B and S2B/D2B, S3A/D3B and S3B/D3B off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|    | 1                                              | 0                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1B and S1B/D1B, S2A/D2B and S2B/D2B, S3A/D3B and S3B/D3B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|    | 1                                              | 0                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1A off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | 1                                              | 0                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1A on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | 1                                              | 0                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1B off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | 1                                              | 0                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1A/D1B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1B/D1A off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1B/D1A on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1B/D1B off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S1B/D1B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S2A/D2A off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S2A/D2A on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S2A/D2B off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S2A/D2B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S2B/D2A off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S2B/D2A on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S2B/D2B off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S2B/D2B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S3A/D3A off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    | 1                                              | 0                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S3A/D3A on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S3A/D3B off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S3A/D3B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S3B/D3A off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S3B/D3A on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S3B/D3B off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    |                                                |                                                               |                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S3B/D3B on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    | -                                              | -                                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Crosspoint Switch 1 disabled (All switches connected to D1A and D1B are off)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Crosspoint Switch 2 disabled (All switches connected to D2A and D2B are off)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Crosspoint Switch 3 disabled (All switches connected to D3A and D3B are off)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GPO1 low for ADG799G/Reserved for ADG799A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GPO1 high for ADG799G/Reserved for ADG799A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GPO2 low for ADG799G/Reserved for ADG799A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GPO2 high for ADG799G/Reserved for ADG799A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GPO1 and GPO2 low for ADG799G/Reserved for ADG799A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|    |                                                | -                                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GPO1 and GPO2 low for ADG799G/Reserved for ADG799A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|    |                                                | -                                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All muxes disabled (all switches are off)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|    |                                                |                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|    |                                                | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0 | 1       0       0         1       0       0         1       0       0         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1         1       0       1 | 1       0       0       1         1       0       0       1         1       0       1       0         1       0       1       0         1       0       1       0         1       0       1       0         1       0       1       0         1       0       1       0         1       0       1       1         1       0       1       1         1       0       1       1         1       0       1       1         1       0       1       1         1       0       1       1         1       0       1       1         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       1         1       1       0       1         1       1       0       1         1       < | 1       0       0       1       1         1       0       0       1       1         1       0       1       0       0         1       0       1       0       0         1       0       1       0       0         1       0       1       0       0         1       0       1       0       1         1       0       1       0       1         1       0       1       1       0         1       0       1       1       0         1       0       1       1       0         1       0       1       1       0         1       0       1       1       1         1       0       1       1       1         1       0       1       1       1         1       1       0       0       0         1       1       0       1       1         1       1       0       1       1         1       1       0       1       1         1       1       0 <td>1       0       0       1       1       1         1       0       0       1       1       1         1       0       0       0       0       0         1       0       1       0       0       0         1       0       1       0       0       0         1       0       1       0       0       1         1       0       1       0       0       1         1       0       1       0       1       0         1       0       1       0       1       0         1       0       1       0       1       1         1       0       1       1       0       0         1       0       1       1       0       0         1       0       1       1       1       0         1       0       1       1       1       1         1       0       1       1       1       1         1       0       1       1       1       1         1       0       1       1       1</td> | 1       0       0       1       1       1         1       0       0       1       1       1         1       0       0       0       0       0         1       0       1       0       0       0         1       0       1       0       0       0         1       0       1       0       0       1         1       0       1       0       0       1         1       0       1       0       1       0         1       0       1       0       1       0         1       0       1       0       1       1         1       0       1       1       0       0         1       0       1       1       0       0         1       0       1       1       1       0         1       0       1       1       1       1         1       0       1       1       1       1         1       0       1       1       1       1         1       0       1       1       1 |  |  |

 $<sup>^{1}</sup>$  X = Logic state does not matter.

# **EVALUATION BOARD**

The ADG799G evaluation kit allows designers to evaluate the high performance of the device with minimum effort.

The evaluation kit includes a printed circuit board populated with the ADG799G. The evaluation board can be used to evaluate the performance of both the ADG792A and ADG792G. It interfaces to the USB port of a PC, or it can be used as a standalone evaluation board. Software is available with the evaluation board that allows the user to easily program the ADG799G through the USB port. Schematics of the evaluation board are shown in Figure 33 and Figure 34. The software runs on any PC with Microsoft\* Windows\* 2000 or Windows XP and a minimum screen resolution of 1200×768.

## **USING THE ADG799G EVALUATION BOARD**

The ADG799G evaluation kit is a test system designed to simplify the evaluation of the device. Each input/output of the part comes with a socket specifically chosen for easy audio/video evaluation. A data sheet is also available with the evaluation board offering full information on how to operate the evaluation board.

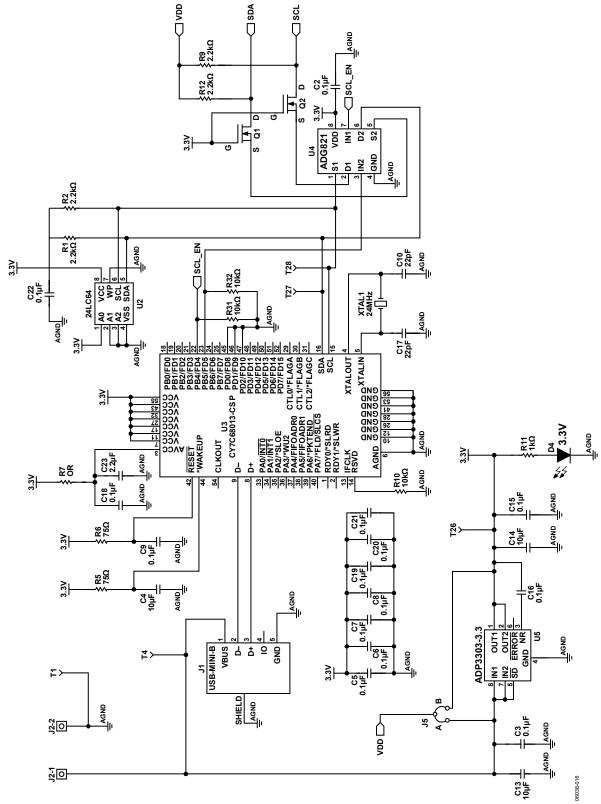
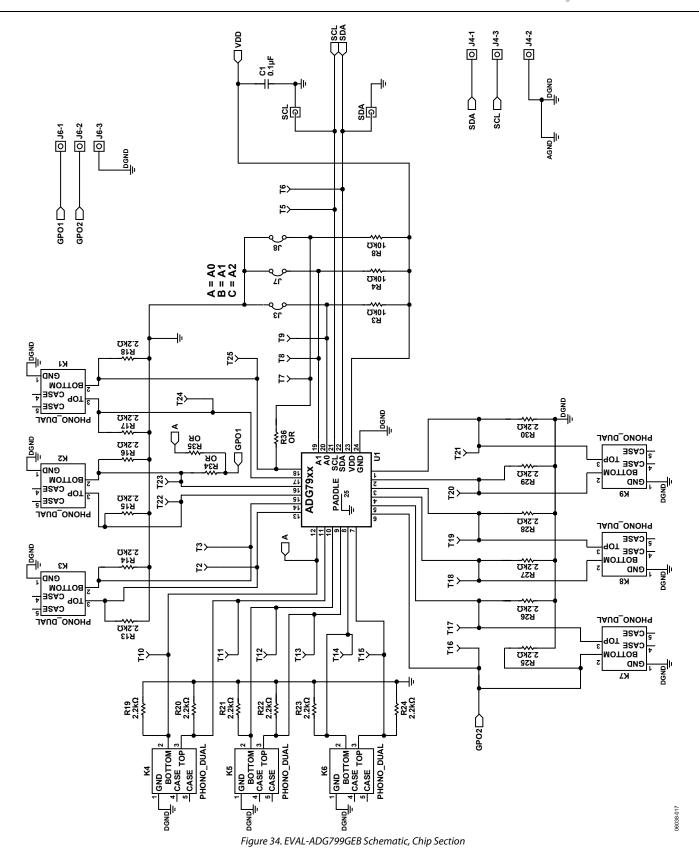
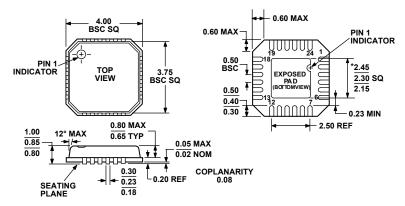





Figure 33. EVAL-ADG799GEB Schematic, USB Controller Section



# **OUTLINE DIMENSIONS**



#### \*COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2 EXCEPT FOR EXPOSED PAD DIMENSION

Figure 35. 24-Lead Lead Frame Chip Scale Package [LFCSP\_VQ] 4 mm × 4 mm Body, Very Thin Quad (CP-24-2) Dimensions shown in millimeters

# **ORDERING GUIDE**

| Model                           | Temperature Range | I <sup>2</sup> C Speed | Package Description | Package Option |  |  |  |  |  |  |  |  |
|---------------------------------|-------------------|------------------------|---------------------|----------------|--|--|--|--|--|--|--|--|
| ADG799ABCPZ-REEL <sup>1</sup>   | −40°C to +85°C    | 100 kHz, 400 kHz       | 24-Lead LFCSP_VQ    | CP-24-2        |  |  |  |  |  |  |  |  |
| ADG799ABCPZ-500RL7 <sup>1</sup> | −40°C to +85°C    | 100 kHz, 400 kHz       | 24-Lead LFCSP_VQ    | CP-24-2        |  |  |  |  |  |  |  |  |
| ADG799GBCPZ-REEL <sup>1</sup>   | −40°C to +85°C    | 100 kHz, 400 kHz       | 24-Lead LFCSP_VQ    | CP-24-2        |  |  |  |  |  |  |  |  |
| ADG799GBCPZ-500RL7 <sup>1</sup> | -40°C to +85°C    | 100 kHz, 400 kHz       | 24-Lead LFCSP_VQ    | CP-24-2        |  |  |  |  |  |  |  |  |

 $<sup>^{1}</sup>$  Z = Pb-free part.

Purchase of licensed I<sup>2</sup>C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I<sup>2</sup>C Patent Rights to use these components in an I<sup>2</sup>C system, provided that the system conforms to the I<sup>2</sup>C Standard Specification as defined by Philips.