

ANALOG 2 pF Off Capacitance, 1 pC Charge Injection, ±15 V/12 V iCMOSTM Dual CONT Switch

Preliminary Technical Data

ADG1236

FEATURES

2 pF off capacitance 1 pC charge injection 33 V supply range 120 Ω on resistance Fully specified at +12 V, ±15 V No V_L supply required 3 V logic-compatible inputs Rail-to-rail operation 16-lead TSSOP and 12-lead LFCSP packages Typical power consumption: <0.03 μW

APPLICATIONS

Automatic test equipment Data aguisition systems Battery-powered systems Sample-and-hold systems **Audio signal routing Communication systems**

GENERAL DESCRIPTION

The ADG1236 is a monolithic CMOS device containing two independently selectable SPDT switches. It is designed on an iCMOS process. iCMOS (industrial-CMOS) is a modular manufacturing process combining high voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 30 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages, while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of the part make it an ideal solution for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the part suitable for video signal switching. iCMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

FUNCTIONAL BLOCK DIAGRAM

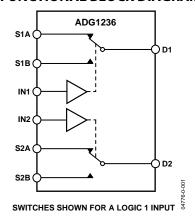


Figure 1.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. Both switches exhibit break-before-make switching action for use in multiplexer applications.

PRODUCT HIGHLIGHTS

- 2 pF off capacitance (±15 V supply).
- 1 pC charge injection.
- 3 V logic-compatible digital inputs: $V_{IH} = 2.0 \text{ V}$, $V_{IL} = 0.8 \text{ V}$.
- No V_L logic power supply required.
- Ultralow power dissipation: <0.03 μW.
- 16-lead TSSOP and 12-lead 3 mm \times 3 mm LFCSP packages.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG1236

Preliminary Technical Data

TABLE OF CONTENTS

Specifications	Pin Configurations and Function Descriptions	
Dual Supply 3	Terminology	8
Single Supply4	Typical Performance Characteristics	
Absolute Maximum Ratings6	Test Circuits	12
Truth Table For Switches	Outline Dimensions	14
ESD Caution6	Ordering Guide	14

REVISION HISTORY

11/04—Revision PrD: Preliminary Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameters	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance (RoN)				Ωtyp	$V_s = \pm 10 \text{ V}, I_s = -10 \text{ mA}; \text{ Figure 21}$
	120	220	260	Ω max	
On Resistance Match between Channels (ΔR_{ON})	5			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -10 \text{ mA}$
				Ω max	
On Resistance Flatness (RFLAT(ON))	25			Ω typ	$V_S = -5 \text{ V/0 V/+5 V; } I_S = -10 \text{ mA}$
			50	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +10 \text{ V}, V_{SS} = -10 \text{ V}$
Source Off Leakage, I _s (Off)	±0.01			nA typ	$V_S = 0 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/0 \text{ V}; Figure 22$
	±0.5	±1	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_S = 0 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/0 \text{ V}; Figure 22$
	±0.5	±1	±5	nA max	
Channel On Leakage, ID, IS (On)	±0.04			nA typ	$V_S = V_D = 0 \text{ V or } 10 \text{ V}$; Figure 23
	±1	±2	±5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
·			±0.5	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ²				. /.	
t _{ON}	50			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
				ns max	$V_S = \pm 10 \text{ V}$; Figure 24
t _{OFF}	20		100	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
				ns max	$V_S = \pm 10 \text{ V}$; Figure 24
Break-before-Make Time Delay, t _D	15		40	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
•			1	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; Figure 25
Charge Injection	1			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; Figure 26$
Off Isolation	75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27
Channel-to-Channel Crosstalk	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 28
Total Harmonic Distortion + Noise	0.002			% typ	$R_L = 600 \Omega$, 5 V rms, f = 20 Hz to 20 kHz
–3 dB Bandwidth	700			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 29
C _s (Off)	2			pF typ	
C _D (Off)	2			pF typ	
C _D , C _S (On)	5			pF typ	
POWER REQUIREMENTS	+			P. 17P	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
IDD	0.001			μA typ	Digital Inputs = 0 V or V _{DD}
	0.001		5.0	μA max	2.3.3.111933
			1 7 0		
lpp	150		5.0	-	Digital Input = 5 V
I _{DD}	150			μA typ	Digital Input = 5 V
l _{DD}	150 0.001		300	-	Digital Input = 5 V Digital Inputs = 0 V or V _{DD}

ADG1236

Parameters	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
I _{GND}	0.001			μA typ	Digital Inputs = 0 V or V _{DD}
			5.0	μA max	
I _{GND}	150			μA typ	Digital Input = 5 V
		300		μA max	

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameters	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0VtoV_{DD}$	V	
On Resistance (RoN)	220			Ωtyp	$V_S = +10 \text{ V}, I_S = -10 \text{ mA}; Figure 21$
				Ω max	
On Resistance Match between	10			Ωtyp	$V_S = +10 \text{ V}, I_S = -10 \text{ mA}$
Channels (ΔR _{ON})					
				Ω max	
On Resistance Flatness (R _{FLAT(ON)})	40			Ω typ	$V_S = +3 \text{ V}/+6 \text{ V}/+9 \text{ V}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 12 \text{ V}$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; Figure 22$
	±0.5	±1	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; Figure 22$
	±0.5	±1	±5	nA max	
Channel On Leakage, ID, Is (On)	±0.04			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V, Figure } 23$
	±1	±2	±5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0		V min	
Input Low Voltage, V _{INL}		8.0		V max	
Input Current, IINL or IINH	0.001			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.5	μA max	
Digital Input Capacitance, C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	50			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
				ns max	$V_S = 8 \text{ V}$; Figure 24
toff	15			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
				ns max	$V_S = 8 \text{ V}$; Figure 24
Break-before-Make Time Delay, t _D	15			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
			1	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; Figure 25
Charge Injection	5			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; Figure 26}$
				pC typ	
Off Isolation	75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27
Channel-to-Channel Crosstalk	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 28
−3 dB Bandwidth	700			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 29
C _s (Off)	2			pF typ	
C _D (Off)	2			pF typ	
C_D , C_S (On)	5			pF typ	

 $^{^1}$ Temperature range for Y Version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

Parameters	25°C	85°C	Y Version ¹	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = 13.2 \text{ V}$
I _{DD}	0.001			μA typ	Digital Inputs = 0 V or V_{DD}
			5.0	μA max	
I _{DD}	150			μA typ	Digital Inputs = 5 V
			300	μA max	

 $^{^1}$ Temperature range for Y Version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 3.	
Parameter	Ratings
V _{DD} to V _{SS}	38 V
V_{DD} to GND	−0.3 V to +25 V
V _{ss} to GND	+0.3 V to −25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Digital Inputs	$GND - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range	
Industrial (B Version)	−40°C to +85°C
Automotive (Y Version)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
16-Lead TSSOP, θ_{JA} Thermal Impedance	150.4°C/W
12-Lead LFCSP, θ _{JA} Thermal Impedance	TBD°C/W
Lead Temperature, Soldering	
Vapor Phase (60 s)	215°C
Infrared (15 s)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition s above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TRUTH TABLE FOR SWITCHES

Table 4.

IN	Switch A	Switch B
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Over voltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

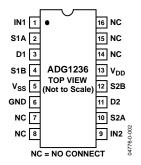


Figure 2.TSSOP Pin Configuration

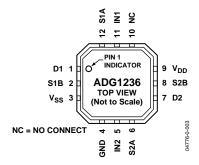


Figure 3. LFCSP Pin Configuration

Table 5. Pin Function Descriptions

Pin	No.		
TSSOP	LFCSP	Mnemonic	Function
1	11	IN1	Logic Control Input.
2	12	S1A	Source Terminal. Can be an input or output.
3	1	D1	Drain Terminal. Can be an input or output.
4	2	S1B	Source Terminal. Can be an input or output.
5	3	V_{SS}	Most Negative Power Supply Potential.
6	4	GND	Ground (0 V) Reference.
7, 8, 14–16	10	NC	No Connect.
9	5	IN2	Logic Control Input.
10	6	S2A	Source Terminal. Can be an input or output.
11	7	D2	Drain Terminal. Can be an input or output.
12	8	S2B	Source Terminal. Can be an input or output.
13	9	V_{DD}	Most Positive Power Supply Potential.

ADG1236

TERMINOLOGY

 I_{DD}

The positive supply current.

 $\mathbf{I}_{\mathbf{SS}}$

The negative supply current.

 $V_D(V_S)$

The analog voltage on Terminals D and S.

 R_{ON}

The ohmic resistance between D and S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

 I_D , I_S (On)

The channel leakage current with the switch on.

 \mathbf{V}_{INL}

The maximum input voltage for Logic 0.

 V_{INH}

The minimum input voltage for Logic 1.

 $I_{INL}(I_{INH})$

The input current of the digital input.

Cs (Off)

The off switch source capacitance, measured with reference to ground.

C_D (Off)

The off switch drain capacitance, measured with reference to ground.

 C_D , C_S (On)

The on switch capacitance, measured with reference to ground.

 C_{IN}

The digital input capacitance.

 t_{ON}

The delay between applying the digital control input and the output switching on. See Figure 24.

toff

The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of $V_D\left(V_S\right)$ for Single Supply

Figure 5, On Resistance as a Function of V_D (V_S) for Dual Supply

Figure 6. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

Figure 7. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

Figure 8, On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

Figure 9. Leakage Current as a Function of V_D (V_S)

Figure 10. Leakage Currents as a Function of V_D (V_S)

Figure 11. Leakage Current as a Function of V_D (V_S)

Figure 12. Leakage Currents as a Function of Temperature

Figure 13. Leakage Currents as a Function of Temperature

Figure 14. Supply Currents vs. Input Switching Frequency

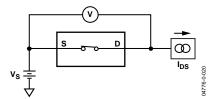
Figure 15. Charge Injection vs. Source Voltage

TBD

Figure 16. t_{ON}/t_{OFF} Times vs. Temperature

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency



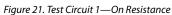

Figure 19. On Response vs. Frequency

Figure 20. THD + N vs. Frequency

TEST CIRCUITS

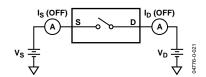


Figure 22. Test Circuit 2— Off Resistance

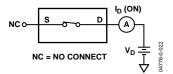


Figure 23. Test Circuit 3—On Leakage

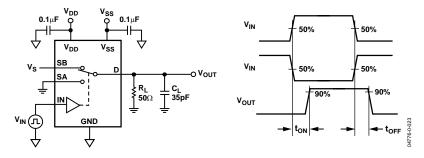


Figure 24. Test Circuit 4—Switching Times

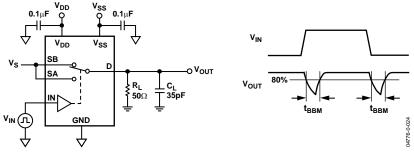


Figure 25. Test Circuit 5—Break-before-Make Time Delay

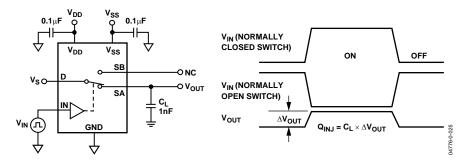


Figure 26. Test Circuit 6—Charge Injection

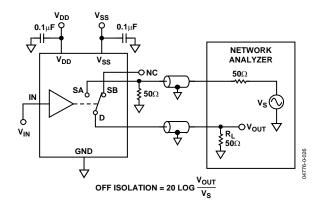


Figure 27. Test Circuit 7—Off Isolation

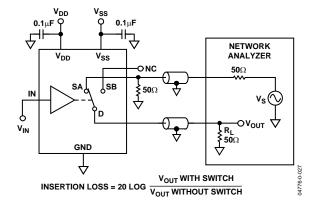


Figure 28. Test Circuit 8—Channel-to-Channel Crosstalk

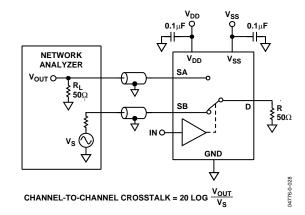
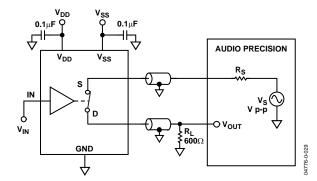
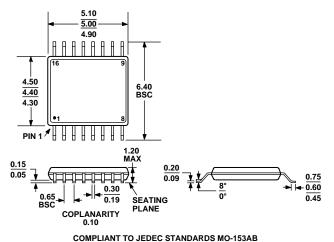
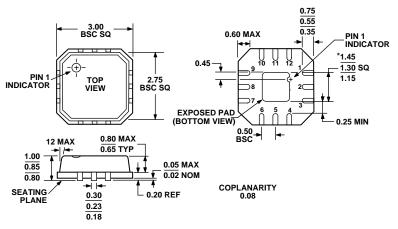


Figure 29. Test Circuit 9— Bandwidth


Figure 30. Test Circuit 10—THD + Noise

OUTLINE DIMENSIONS

COMI EIANT TO SEDEC STANDANDO MO-133AD

Figure 31. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in inches and (millimeters

*COMPLIANT TO JEDEC STANDARDS MO-220-VEED-1 EXCEPT FOR EXPOSED PAD DIMENSION.

Figure 32. 12-Lead Lead Frame Chip Scale Package [VQ_LFCSP] 3 mm × 3 mm Body, Very Thin Quad (CP-12-1) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1236YRU	−40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1236YCP	−40°C to +125°C	Lead Frame Chip Scale Package (LFCSP)	CP-12-1

Preliminary Technical Data

ADG1236

NOTES

٨	n	^ 1	1	1	C
A	U	G1	ΙZ	.5	h

Preliminary Technical Data

NOTES