FEATURES

High Dynamic Range

Output IP3: +22 dBm: Re 50Ω @ 250 MHz
Low Noise Figure: 5.9 dB @ 250 MHz
Two Gain Versions:
AD8350-15 15 dB
AD8350-20 20 dB
-3 dB Bandwidth: 1.0 GHz
Single Supply Operation: +5 V to +10 V
Supply Current: 28 mA
Input/Output Impedance: 200Ω
Single-Ended or Differential Input Drive
8-Lead SOIC Package

APPLICATIONS

Cellular Base Stations

Communications Receivers
RF/IF Gain Block
Differential A-to-D Driver
SAW Filter Interface
Single-Ended to Differential Conversion
High Performance Video
High Speed Data Transmission

PRODUCT DESCRIPTION

The AD 8350 series are high performance fully-differential amplifiers useful in RF and IF circuits up to 1000 M Hz . The amplifier has excellent noise figure of 5.9 dB at 250 M Hz . It offers a high output third order intercept (OIP3) of +22 dBm at 250 M Hz . Gain versions of 15 dB and 20 dB are offered.
The AD 8350 is designed to meet the demanding performance requirements of communications transceiver applications. It enables a high dynamic range differential signal chain, with exceptional linearity and increased common-mode rejection. The device can be used as a general purpose gain block, an A-to-D driver, and high speed data interface driver, among other functions. The AD 8350 input can also be used as a single-ended-to-differential converter.

FUNCTIONAL BLOCK DIAGRAMS
8-Lead SOIC Package (with E nable)

The amplifier can be operated down to +5 V with an OIP3 of +22 dBm at 250 M Hz and slightly reduced distortion performance. T he wide bandwidth, high dynamic range and temperature stability make this product ideal for the various RF and IF frequencies required in cellular, CATV, broadband, instrumentation and other applications.
The AD 8350 is offered in an 8-lead single SOIC package. It operates from +5 V and +10 V power supplies, drawing 28 mA typical. The AD 8350 offers a power enable function for powersensitive applications. T he AD 8350 is fabricated using A nalog Devices' proprietary high speed complementary bipolar process. The device is available in the industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

AD8350.15-SPEC|F|CATONS $\begin{aligned} & \left(@+25^{\circ} \mathrm{C}, \mathrm{V}_{5}=+5 \mathrm{~V}, \mathrm{G}=15 \mathrm{~dB} \text {, unless otherwise noted. All specifications refer }\right. \\ & \text { to differential inputs and differential outputs unless noted) }\end{aligned}$

Parameter	Conditions	Min	Typ	Max	Units
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB F latness Slew Rate Settling T ime Gain (S21) ${ }^{1}$ Gain Supply Sensitivity G ain Temperature Sensitivity Isolation (S12) ${ }^{1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp-p} \\ & \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} p-\mathrm{p} \\ & 0.1 \%, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{f}=50 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{f}=50 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{f}=50 \mathrm{MHz} \end{aligned}$	14	$\begin{aligned} & 0.9 \\ & 1.1 \\ & 270 \\ & 270 \\ & 2000 \\ & 10 \\ & 15 \\ & 0.003 \\ & -0.002 \\ & -18 \end{aligned}$	16	GHz GHz M Hz M Hz $\mathrm{V} / \mu \mathrm{S}$ ns dB dB N $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ dB
NOISE/HARMONIC PERFORMANCE 50 MHz Signal Second Harmonic Third H armonic Output Second Order Intercept ${ }^{2}$ Output Third Order Intercept ${ }^{2}$ 250 M Hz Signal Second H armonic Third Harmonic Output Second Order Intercept ${ }^{2}$ Output Third Order Intercept ${ }^{2}$ 1 dB Compression Point (RTI) ${ }^{2}$ Voltage N oise (RTI) N oise Figure	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp-p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp} p-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp} p-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp-p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp-p} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \mathrm{f}=150 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}=150 \mathrm{M} \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & -66 \\ & -67 \\ & -65 \\ & -70 \\ & 52 \\ & 52 \\ & 22 \\ & 23 \\ & \\ & -48 \\ & -49 \\ & -52 \\ & -61 \\ & 33 \\ & 34 \\ & 18 \\ & 22 \\ & 2 \\ & 5 \\ & 1.7 \\ & 6.8 \end{aligned}$		dBc dBc dBc dBc dBm dBm dBm dBm dBC dBC dBc dBc dBm dBm dBm dBm dBm dBm \qquad $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ dB
IN PUT/OUTPUT CHARACTERISTICS D ifferential Offset Voltage (RTI) D ifferential Offset Drift Input Bias Current Input Resistance Input C apacitance CMRR O utput Resistance O utput C apacitance	$\mathrm{V}_{\text {OUT }+}-\mathrm{V}_{\text {OUT- }}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Real $\mathrm{f}=50 \mathrm{MHz}$ Real		$\begin{aligned} & \pm 1 \\ & 0.02 \\ & 15 \\ & 200 \\ & 2 \\ & -67 \\ & 200 \\ & 2 \end{aligned}$		mV $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ Ω pF dB Ω pF
POWER SUPPLY O perating Range Quiescent Current Power-U p/D own Switching Power Supply Rejection Ratio	Powered Up, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ Powered D own, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ Powered Up, $\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}$ Powered Down, $\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}$ $\mathrm{f}=50 \mathrm{MHz}, \mathrm{~V}_{\mathrm{s}} \Delta=1 \vee \mathrm{p}-\mathrm{p}$	$\begin{aligned} & +4 \\ & 25 \\ & 3 \\ & 27 \\ & 3 \end{aligned}$	$\begin{aligned} & 28 \\ & 3.8 \\ & 30 \\ & 4 \\ & 15 \\ & -58 \end{aligned}$	$\begin{aligned} & +11.0 \\ & 32 \\ & 5.5 \\ & 34 \\ & 6.5 \end{aligned}$	V mA mA mA mA ns dB
OPERATING TEM PERATURE RANGE		-40		+85	${ }^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ See T ables I-IV for complete list of S-Parameters.
${ }^{2}$ Re: 50Ω.
Specifications subject to change without notice.

Parameter	Conditions	Min	Typ	Max	Units
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew R ate Settling Time G ain (S21) ${ }^{1}$ G ain Supply Sensitivity G ain T emperature Sensitivity Isolation (S12) ${ }^{1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp-p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} p-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp} \mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp-p} \\ & \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} \text { p-p } \\ & 0.1 \%, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{f}=50 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{f}=50 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{f}=50 \mathrm{MHz} \end{aligned}$	19	$\begin{aligned} & 0.7 \\ & 0.9 \\ & 230 \\ & 200 \\ & 2000 \\ & 15 \\ & 20 \\ & 0.003 \\ & -0.002 \\ & -22 \end{aligned}$	21	GHz GHz M Hz MHz $\mathrm{V} / \mathrm{\mu s}$ ns dB $d B / V$ $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ dB
NOISE / HARM ONIC PERFORMANCE 50 MHz Signal Second Harmonic Third Harmonic Output Second Order Intercept ${ }^{2}$ Output Third Order Intercept ${ }^{2}$ 250 M Hz Signal Second Harmonic Third Harmonic Output Second Order Intercept ${ }^{2}$ Output Third Order Intercept ${ }^{2}$ 1 dB Compression Point (RTI) ${ }^{2}$ Voltage Noise (RTI) Noise Figure	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp-p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp} p \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp} p-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} \\ & \mathrm{f}=150 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}=150 \mathrm{M} \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & -65 \\ & -66 \\ & -66 \\ & -70 \\ & 50 \\ & 50 \\ & 22 \\ & 23 \\ & \\ & -45 \\ & -46 \\ & -55 \\ & -60 \\ & 31 \\ & 32 \\ & 18 \\ & 22 \\ & -2.6 \\ & 1.8 \\ & 1.7 \\ & 5.6 \end{aligned}$		dBC dBc dBc dBC dBm dBm dBm dBm dBC dBC dBc dBc dBm dBm dBm dBm dBm dBm $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ dB
INPUT/OUTPUT CHARACTERISTICS Differential Offset Voltage (RTI) Differential Offset Drift Input Bias Current Input Resistance Input C apacitance CMRR Output Resistance Output C apacitance	$\mathrm{V}_{\text {OUT }+}-\mathrm{V}_{\text {OUT }}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Real $\mathrm{f}=50 \mathrm{M} \mathrm{~Hz}$ Real		$\begin{aligned} & \pm 1 \\ & 0.02 \\ & 15 \\ & 200 \\ & 2 \\ & -52 \\ & 200 \\ & 2 \end{aligned}$		mV $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ Ω pF dB Ω pF
POWER SUPPLY Operating Range Quiescent Current Power-U p/D own Switching Power Supply Rejection Ratio	Powered U p, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ Powered Down, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ Powered Up, $\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}$ Powered Down, $\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}$ $\mathrm{f}=50 \mathrm{MHz}, \mathrm{~V}_{\mathrm{s}} \Delta=1 \vee \mathrm{p}-\mathrm{p}$	$\begin{aligned} & +4 \\ & 25 \\ & 3 \\ & 27 \\ & 3 \end{aligned}$	28 3.8 30 4 15 -45	$\begin{aligned} & +11.0 \\ & 32 \\ & 5.5 \\ & 34 \\ & 6.5 \end{aligned}$	V mA mA mA mA ns dB
OPERATING TEM PERATURE RANGE		-40		+85	${ }^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ See T ables I-IV for complete list of S-Parameters.
${ }^{2}$ Re: 50Ω.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*
Supply Voltage, V_{S}.................................. +11 V Input Power Differential 8 dBm Internal Power Dissipation 400 mW
$\theta_{\text {JA }} \ldots . ~ 100^{\circ} \mathrm{C} / \mathrm{W}$
M aximum Junction Temperature $\ldots+125^{\circ} \mathrm{C}$
Operating Temperature Range............$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage T emperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering 60 sec) $+300^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability

PIN CONFIGURATION

PIN FUNCTION DESCRIPTIONS

Pin	Function	Description
1, 8	IN +, IN -	Differential Inputs. IN + and INshould be ac-coupled (pins have a dc bias of midsupply). Differential input impedance is 200Ω.
2	ENBL	Power-up Pin. A high level (5 V) enables the device; a low level (0 V) puts device in sleep mode.
3	$\mathrm{V}_{\text {cc }}$	Positive Supply Voltage. +5 V to +10 V .
4, 5	OUT+, OUT-	Differential Outputs. OUT + and OUT-should be ac-coupled (pins have a dc bias of midsupply). Differential input impedance is 200Ω.
6, 7	GND	Common External Ground Reference.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD 8350AR 15	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	SO-8
AD 8350AR15-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	SO-8
AD 8350AR15-REEL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	SO-8
AD 8350AR15-EVAL		Evaluation Board (15 dB)	
AD 8350AR20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	SO-8
AD 8350AR20-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	SO-8
AD 8350AR20-REEL $7{ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-L ead SOIC	SO-8
AD 8350AR20-EVAL		Evaluation Board (20 dB)	

NOTES

${ }^{1} 13$ " Reels of 2500 each.
${ }^{2} 7$ " Reels of 750 each.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 8350 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 1. Supply Current vs. Temperature

Figure 4. AD8350-15 Input Impedance vs. Frequency

Figure 7. AD8350-20 Output Impedance vs. Frequency

Figure 2. AD8350-15 Gain (S21) vs. Frequency

Figure 5. AD8350-20 Input Impedance vs. Frequency

Figure 8. AD8350-15 Isolation (S12) vs. Frequency

Figure 3. AD8350-20 Gain (S21) vs. Frequency

Figure 6. AD8350-15 Output Impedance vs. Frequency

Figure 9. AD8350-20 Isolation (S12) vs. Frequency

Figure 10. AD8350-15 Harmonic Distortion vs. Frequency

Figure 13. AD8350-20 Harmonic Distortion vs. Differential Output Voltage

Figure 16. AD8350-15 Output Referred IP3 vs. Frequency

Figure 11. AD8350-20 Harmonic Distortion vs. Frequency

Figure 14. AD8350-15 Output Referred IP2 vs. Frequency

Figure 17. AD8350-20 Output Referred IP3 vs. Frequency

Figure 12. AD8350-15 Harmonic Distortion vs. Differential Output Voltage

Figure 15. AD8350-20 Output Referred IP2 vs. Frequency

Figure 18. AD8350-15 1 dB Compression vs. Frequency

Figure 19. AD8350-20 1 dB Compression vs. Frequency

Figure 22. AD8350 Gain (S21) vs. Supply Voltage

Figure 25. AD8350 CMRR vs.
Frequency

Figure 20. AD8350-15 Noise Figure vs. Frequency

Figure 23. AD8350 Output Offset Voltage vs. Temperature

Figure 26. AD8350 Power-Up/Down Response Time

Figure 21. AD8350-20 Noise Figure vs. Frequency

Figure 24. AD8350 PSRR vs. Frequency

AD8350

APPLICATIONS

Using the AD8350

Figure 27 shows the basic connections for operating the AD 8350. A single supply in the range +5 V to +10 V is required. The power supply pin should be decoupled using a $0.1 \mu \mathrm{~F}$ capacitor. The ENBL pin is tied to the positive supply or to +5 V (when $\mathrm{V}_{\mathrm{CC}}=+10 \mathrm{~V}$) for normal operation and should be pulled to ground to put the device in sleep mode. B oth the inputs and the outputs have dc bias levels at midsupply and should be ac-coupled.
Also shown, in Figure 27, are the impedance balancing requirements, either resistive or reactive, of the input and output. With an input and output impedance of 200Ω, the AD 8350 should be driven by a 200Ω source and loaded by a 200Ω impedance. A reactive match can also be implemented.
Figure 28 shows how the AD 8350 can be driven by a singleended source. The unused input should be ac-coupled to ground. When driven single-ended, there will be a slight imbalance in the differential output voltages. This will cause an increase in the second order harmonic distortion (at 50 M Hz , with $\mathrm{V}_{\mathrm{CC}}=+10 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V} p-\mathrm{p},-59 \mathrm{dBc}$ was measured for the second harmonic on AD 8350-15).

Reactive Matching

In practical applications, the AD 8350 will most likely be matched using reactive matching components as shown in Figure 29. M atching components can be calculated using a Smith Chart and the AD 8350's S-Parameters (see T ables I and II) along with those of the devices that are driving and loading it. The SParameters in Tables I and II assume a differential source and load impedance of 50Ω. Because the load impedance on the output of the AD 8350 affects the input impedance, a simultaneous conjugate match must be performed to correctly match both input and output.

Figure 29. Reactively Matching the Input and Output

Figure 27. Basic Connections for Differential Drive

Figure 28. Basic Connections for Single-Ended Drive

Figure 30 shows how the AD 8350 input can be matched for a single-ended drive. The unused input is ac-coupled to ground using a low impedance (i.e., high value) capacitance. The SParameters for this configuration are shown in T ables III and IV. These values assume a single-ended source impedance of 50Ω and a differential load impedance of 50Ω. As in the case of a differential drive, a simultaneous conjugate match must be performed to correctly match both input and output.

Evaluation Board

Figure 31 shows the schematic of the AD 8350 evaluation board as it is shipped from the factory. The board is configured to allow easy evaluation using single-ended 50Ω test equipment. The input and output transformers have a 4-to-1 impedance ratio and transform the AD 8350's 200Ω input and output impedances to 50Ω. In this mode, 0Ω resistors (R1 and R4) are required.
To allow compensation for the insertion loss of the transformers, a calibration path is provided at T est In and T est Out. This consists of two transformers connected back to back.
To drive and load the board differentially, transformers T 1 and T 2 should be removed and replaced with four 0Ω resistors (0805 size); Resistors R 1 and R4 (0Ω) should also be removed. This yields a circuit with a broadband input and output impedance of 200Ω. T o match to impedances other than this, matching components (0805 size) can be placed on pads C $1, \mathrm{C} 2, \mathrm{C} 3$, C4, L1 and L2.

Figure 30. Matching Circuit for Single-Ended Drive

Figure 31. AD8350 Evaluation Board

Table I. Typical S Parameters AD8350-15: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, Differential Input Signal.
$Z_{\text {SOURCE }}($ diff $)=50 \Omega, Z_{\text {LOAD }}($ diff $)=50 \Omega$

Frequency (MHz)	S11	$\mathbf{S 1 2}$	S21	S22
50	$0.791 \angle-3^{\circ}$	$0.068 \angle 177^{\circ}$	$2.73 \angle-3^{\circ}$	$0.795 \angle-2^{\circ}$
100	$0.787 \angle-6^{\circ}$	$0.071 \angle 174^{\circ}$	$2.79 \angle-7^{\circ}$	$0.794 \angle-5^{\circ}$
150	$0.778 \angle-9^{\circ}$	$0.070 \angle 172^{\circ}$	$2.91 \angle-11^{\circ}$	$0.787 \angle-7^{\circ}$
200	$0.766 \angle-13^{\circ}$	$0.072 \angle 168^{\circ}$	$3.06 \angle-16^{\circ}$	$0.779 \angle-10^{\circ}$
250	$0.749 \angle-17^{\circ}$	$0.074 \angle 165^{\circ}$	$3.24 \angle-21^{\circ}$	$0.768 \angle-12^{\circ}$

Table II. Typical S Parameters AD8350-20: V $\mathbf{C C}=5 \mathrm{~V}$, Differential Input Signal.
$Z_{\text {SOURCE }}($ diff $)=50 \Omega, Z_{\text {LOAD }}($ diff $)=50 \Omega$

Frequency $\mathbf{(M H z)}$	$\mathbf{S 1 1}$	$\mathbf{S 1 2}$	$\mathbf{S 2 1}$	$\mathbf{S 2 2}$
50	$0.810 \angle-4^{\circ}$	$0.046 \angle 176^{\circ}$	$4.82 \angle-2.5^{\circ}$	$0.822 \angle-3^{\circ}$
100	$0.795 \angle-8^{\circ}$	$0.043 \angle 173^{\circ}$	$4.99 \angle-6.16^{\circ}$	$0.809 \angle-5^{\circ}$
150	$0.790 \angle-12^{\circ}$	$0.045 \angle 169^{\circ}$	$5.30 \angle-9.82^{\circ}$	$0.807 \angle-8^{\circ}$
200	$0.776 \angle-17^{\circ}$	$0.046 \angle 165^{\circ}$	$5.71 \angle-14.89^{\circ}$	$0.795 \angle-10^{\circ}$
250	$0.757 \angle-22^{\circ}$	$0.048 \angle 162^{\circ}$	$6.25 \angle-21.29^{\circ}$	$0.783 \angle-13^{\circ}$

Table III. Typical S Parameters AD8350-15: $V_{C C}=5 \mathrm{~V}$, Single-Ended Input Signal. $Z_{\text {SOURCE }}\left(\right.$ diff) $=50 \Omega, Z_{\text {LOAD }}($ diff) $=50 \Omega$

Frequency (MHz)	$\mathbf{S 1 1}$	$\mathbf{S 1 2}$	$\mathbf{S 2 1}$	$\mathbf{S 2 2}$
50	$0.718 \angle-6^{\circ}$	$0.068 \angle 177^{\circ}$	$2.62 \angle-4^{\circ}$	$0.798 \angle-3^{\circ}$
100	$0.701 \angle-12^{\circ}$	$0.066 \angle 173^{\circ}$	$2.66 \angle-10^{\circ}$	$0.794 \angle-6^{\circ}$
150	$0.683 \angle-19^{\circ}$	$0.067 \angle 167^{\circ}$	$2.76 \angle-15^{\circ}$	$0.789 \angle-10^{\circ}$
200	$0.657 \angle-24^{\circ}$	$0.069 \angle 163^{\circ}$	$2.86 \angle-22^{\circ}$	$0.776 \angle-13^{\circ}$
250	$0.625 \angle-31^{\circ}$	$0.070 \angle 159^{\circ}$	$2.98 \angle-28^{\circ}$	$0.763 \angle-16^{\circ}$

Table IV. Typical S Parameters AD8350-20: $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$, Single-E nded Input Signal. $Z_{\text {SOURCE }}($ diff $)=50 \Omega, Z_{\text {LOAD }}($ diff $)=50 \Omega$

Frequency (MHz)	$\mathbf{S 1 1}$	$\mathbf{S 1 2}$	$\mathbf{S 2 1}$	$\mathbf{S 2 2}$
50	$0.747 \angle-7^{\circ}$	$0.040 \angle 175^{\circ}$	$4.71 \angle-4^{\circ}$	$0.814 \angle-3^{\circ}$
100	$0.739 \angle-14^{\circ}$	$0.042 \angle 170^{\circ}$	$4.82 \angle-9^{\circ}$	$0.813 \angle-6^{\circ}$
150	$0.728 \angle-21^{\circ}$	$0.044 \angle 166^{\circ}$	$5.08 \angle-15^{\circ}$	$0.804 \angle-10^{\circ}$
200	$0.698 \angle-29^{\circ}$	$0.045 \angle 161^{\circ}$	$5.37 \angle-22^{\circ}$	$0.792 \angle-13^{\circ}$
250	$0.659 \angle-37^{\circ}$	$0.048 \angle 156^{\circ}$	$5.76 \angle-30^{\circ}$	$0.774 \angle-16^{\circ}$

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Plastic SOIC

(SO-8)

