ChipFind - Datasheet

Part Number GP1A20

Download:  PDF   ZIP
GP1A20
GP1A20
*1 Pulse width
<=
100
µ
s, Duty ratio= 0.01
*2 For 5 seconds
s
Features
1. With cover case
2. High sensing accuracy ( Slit width : 0.5mm )
3. Operating supply voltage V
CC
: 4.5 to 17V
4. PWB mounting type package
s
Applications
1. Printers
2. Ticket vending machines
s
Absolute Maximum Ratings
(Ta = 25°C )
s
Outline Dimensions
(Unit : mm )
Voltage regulator
Amp.
10k
(1.5)
(10.6)
(0.75)
1.0
0.5
(1.27)
Internal connection diagram
GP1A20
(0.75)
1.0
1.6
(5.445)
15.6
6.15
6.45
1.65
1.35
13.9
1.6
7.5
8.0
0.5
4.0
(1.27)
1
2
3
4
5
1 Anode
2 Cathode
5 GND
2
1
4
5
3
center
( 3.6
) Detector
2.5
Parameter
Symbol
Rating
Unit
Input
Forward current
I
F
50
mA
*1
Peak forward current
I
FM
1
A
Reverse voltage
V
R
6
V
Power dissipation
P
75
mW
Output
Supply voltage
V
CC
- 0.5 to + 17
V
Output current
I
O
50
mA
Power dissipation
P
O
250
mW
Operating temperature
T
opr
- 25 to + 85
°C
Storage temperature
T
stg
- 40 to + 100
°C
*2
Soldering temperature
T
sol
260
°C
Dimensions(d) Tolerance
d
<=
6.0
±
0.15
6.0
<
d
<=
16.0
±
0.2
Slit width
(Both side of emitter and detector )
Case
OPIC Photointerrupter with Cover
An OPIC consists of a light-detecting element and signal-
processing circuit integrated onto a single chip.
*" OPIC" ( Optical IC ) is a trademark of the SHARP Corporation.
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
"
"
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
*
Unspecified tolerances shall be as follows
;
*
( )
:
Reference dimensions
3 V
CC
4 V
O
3.0
+
0.3
-
0
5
-
0.45
+
0.3
-
0.1
8.0
MIN.
7.0
MIN.
GP1A20
s
Erectro-optical Characteristics
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
Input
Forward voltage
V
F
I
F
= 10mA
-
1.1
1.4
V
Reverse current
I
R
V
R
= 3V
-
-
10
µ
A
Output
Operating supply voltage
V
CC
4.5
-
17
V
Low level output voltage
V
OL
I
OL
= 16mA, V
CC
= 5V, I
F
= 0
-
0.15
0.4
V
High level output voltage
V
OH
V
CC
= 5V, I
F
= 10mA
4.9
-
-
V
Low level supply current
I
CCL
V
CC
= 5V, I
F
= 0
-
2.5
5.0
mA
High level supply current
I
CCH
V
CC
= 5V, I
F
= 10mA
-
1.0
3.0
mA
Transfer
charac-
teristics
" Low
High" threshold input current
*3
I
FLH
V
CC
= 5V
-
2.0
9.5
mA
*4
Hysteresis
I
FHL
/I
FLH
V
CC
= 5V
0.55
0.75
0.95
-
Response
time
t
PLH
V
CC
= 5V
I
F
= 10mA
R
L
= 280
3
9
µ
s
t
PHL
-
-
5
15
-
0.1
0.5
Rise time
t
r
-
0.05
0.5
Fall time
t
f
(Ta = 25°C )
*3 I
FLH
represents forward current when output changes from low to high.
*4 I
FHL
represents forward current when output changes from high to low.
Hysteresis stands for I
FHL
/I
FLH
.
s
Recommended Operating Conditions
" Low
High" propagation delay time
" High
Low" propagation delay time
Ambient temperature Ta ( °C)
Ambient temperature Ta ( °C)
0
10
20
30
40
50
60
100
75
50
25
0
85
- 25
- 25
85
0
25
50
75
100
300
250
200
150
100
50
0
Forward current I
F
(
mA
)
Output power dissipation P
O
(
mW
)
Fig. 1 Forward Current vs. Ambient
Temperature
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
Parameter
Symbol
Operating temperature
MIN.
MAX.
Unit
Low level output current
I
OL
Ta = 0 to + 70°C
-
16
mA
Forward current
I
F
10
20
mA
GP1A20
- 25
85
0
25
50
75
100
60
50
40
30
20
10
0
Ambient temperature Ta ( °C)
0.05
0.02
0.01
0.1
0.2
0.5
1
50
20
5
2
100
10
1
5mA
16mA
- 25
0
25
50
75
100
Ambient temperature Ta ( °C)
0.4
0.3
0.2
0
0.1
0.2
0.4
0.6
0.8
1.0
1.2
20
15
10
5
0
Ambient temperature Ta ( °C)
0.4
0.6
0.8
1.0
1.2
1.4
100
75
50
25
0
- 25
Relative threshold input current
3.5
0
0.5
1
1.5
2
2.5
3
500
200
100
50
20
10
5
2
1
Ta = 75°C
50°C
25°C
0°C
- 25°C
Fig. 3 Low Level Output Current vs.
Ambient Temperature
Fig. 4 Forward Current vs. Forward Voltage
Fig. 5 Relative Threshold Input Current vs.
Supply Voltage
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
Low level output current I
OL
(
mA
)
Forward current I
F
(
mA
)
Forward voltage V
F
( V)
V
CC
= 5V
Supply voltage V
CC
( V)
I
FLH
= 1 at V
CC
= 5V
I
FHL
I
FLH
I
FLH
I
FHL
I
FLH
= 1 at Ta = 25°C
V
CC
= 5V
V
CC
= 5V
Low level output current I
OL
( mA )
I
OL
= 30mA
I
FHL
/I
FLH
Relative threshold input current
I
FHL
/I
FLH
Low level output voltage V
OL
(
V
)
Low level output voltage V
OL
(
V
)
T
a
= 25°C
T
a
= 25°C
GP1A20
0.2
0.1
0
0.3
0.4
0.5
5
2
0.5
10
1
0.2
6
5
4
3
2
1
7
10
20
30
0
40
50
85°C
25°C
6
4
14
0
2
4
1
3
5
2
6
8
10
12
16
85°C
25°C
0
10%
90%
50%
1.5V
Input
Output
47
Voltage regulator
Amp.
+
5V
0.01
µ
F
280
Test Circuit for Response Time
GND
VO
t
PHL
t
PLH
V
CC
= 5V
R
L
= 280
T
a
= 25°C
Forward current I
F
( mA )
Propagation delay time t
PLH
, t
PHL
(
µ
s
)
Supply voltage V
CC
(V)
I
CCL
I
CCH
T
a
=- 25°C
T
a
=- 25°C
V
CC
= 5V
I
F
= 10mA
T
a
= 25°C
t
r
t
f
L
( k
)
Rise time, fall time t
r
, t
f
(
µ
s
)
Z
O
=
50
t
r
=
t
f
=
0.01
µ
s
V
IN
t
PLH
t
PHL
t
r
t
f
V
OL
V
OH
Fig.10 Propagation Delay Time vs.
Forward Current
s
Precautions for Use
( 1) In this product, flux in the cleaning solvent may remain inside the slit of holder.
( 1) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01
µ
F
Fig. 9 Supply Current vs. Supply Voltage
(10k
)
( 3) As for other general cautions< refer to the chapter " Precautions for Use " .
It sometimes causes lower output;therefore, cleaning is prrhibited.
between Vcc and GND near the device.
Fig.11 Rise Time, Fall Time vs. Load Resistance
Load resistance R
Supply current I
/
I
CCH
CCL
(mA
)