ChipFind - Datasheet

Part Number PCKEP14

Download:  PDF   ZIP

Document Outline

PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Rev. 01 -- 30 October 2002
Product data
1.
Description
The PCKEP14 is a low skew 1-to-5 differential driver, designed with clock distribution
in mind, accepting two clock sources into an input multiplexer. The ECL/PECL input
signals can be either differential or single-ended (if the V
BB
output is used). HSTL
inputs can be used when the PCKEP14 is operating under PECL conditions.
The PCKEP14 specifically guarantees low output-to-output skew. Optimal design,
layout, and processing minimize skew within a device, and from device to device.
To ensure that the tight skew specification is realized, both sides of any differential
output need to be terminated identically into 50
resistors, even if only one output is
being used. If an output pair is unused, both outputs may be left open (unterminated)
without affecting skew.
The common enable (EN) is synchronous, outputs are enabled/disabled in the LOW
state. This avoids a runt clock pulse when the device is enabled/disabled, as can
happen with an asynchronous control. The internal flip-flop is clocked on the falling
edge of the input clock, therefore, all associated specification limits are referenced to
the negative edge of the clock input.
The PCKEP14, as with most other ECL devices, can be operated from a positive V
CC
supply in PECL mode. This allows the PCKEP14 to be used for high performance
clock distribution in +3.3 V or +2.5 V systems.
2.
Features
s
100 ps device-to-device skew
s
25 ps within device skew
s
400 ps typical propagation delay
s
Maximum frequency > 2 GHz (typical)
s
Contains temperature compensation
s
PECL and HSTL mode: V
CC
= 2.375 V to 3.8 V with V
EE
= 0 V
s
NECL mode: V
CC
= 0 V with V
EE
=
-
2.375 V to
-
3.8 V
s
LVDS input compatible
s
Open input default state.
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
2 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
3.
Pinning information
3.1 Pinning
3.2 Pin description
3.2.1
Power supply connection
Fig 1.
SO20 pin configuration.
Fig 2.
TSSOP20 pin configuration.
PCKEP14D
002aaa354
1
2
3
4
5
6
7
8
9
10
Q0
Q0
Q1
Q1
Q2
Q2
Q3
Q3
Q4
Q4
20
19
18
17
16
15
14
13
12
11
VCC
EN
VCC
CLK1
CLK1
VBB
CLK0
CLK0
CLK_SEL
VEE
PCKEP14PW
002aaa221
1
2
3
4
5
6
7
8
9
10
Q0
Q0
Q1
Q1
Q2
Q2
Q3
Q3
Q4
Q4
VCC
EN
VCC
CLK1
CLK1
VBB
CLK0
CLK0
CLK_SEL
VEE
20
19
18
17
16
15
14
13
12
11
Table 1:
Pin description
Symbol
Pin
Description
Q0-Q4
1, 3, 5, 7, 9
Positive ECL/PECL output
Q0-Q4
2, 4, 6, 8, 10
Negative ECL/PECL output
V
EE
11
Negative supply
CLK_SEL
12
ECL/PECL active clock select input. Pin will default LOW
when left open.
CLK0, CLK1
13, 16
ECL/PECL/HSTL CLK input. Pins will default LOW when
left open.
CLK0, CLK1
14, 17
ECL/PECL/HSTL CLK input. Pins will default to V
CC
/2 when
left open.
V
BB
15
Reference voltage output
V
CC
18, 20
Positive supply
EN
19
ECL synchronous enable
CAUTION
All V
CC
and V
EE
pins must be connected to power supply to guarantee
proper operation.
MSC895
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
3 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
4.
Ordering information
5.
Logic diagram
Table 2:
Ordering information
Type number
Package
Name
Description
Version
PCKEP14D
SO20
plastic small outline package 8 leads; body width 7.5 mm
SOT163-1
PCKEP14PW
TSSOP20
plastic thin shrink small outline package; 20 leads; body width 4.4 mm
SOT360-1
Fig 3.
Logic diagram.
CAUTION
All V
CC
and V
EE
pins must be connected to power supply to guarantee
proper operation.
D
Q
1
2
3
4
5
6
7
8
9
10
Q0
Q0
Q1
Q1
Q2
Q2
Q3
Q3
Q4
Q4
1
0
19
16
15
14
12
EN
CLK1
V
BB
CLK0
CLK_SEL
002aaa222
17
CLK1
13
CLK0
11
V
EE
18
V
CC
20
V
CC
MSC895
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
4 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
6.
Function table
[1]
On next negative transition of CLK0 or CLK1.
7.
Attributes
Table 3:
Function table
CLK0
CLK1
CLK_SEL
EN
Q
L
X
L
L
L
H
X
L
L
H
X
L
H
L
L
X
H
H
L
H
X
X
X
H
L
[1]
Table 4:
Attributes
Characteristic
Value
internal input pull-down resistor
75 k
internal input pull-up resistor
37.5 k
ESD protection
Human Body Model
> 2.5 kV
Machine Model
> 100 V
Charged Device Model
> 1 kV
moisture sensitivity, indefinite time out of drypack
Level 1
flammability rating
UL-94 code V-0 A 1/8"
Meets or exceeds JEDEC Specification EIA/JEDS78 IC latch-up test.
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
5 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
8.
Limiting values
9.
Static characteristics
[1]
Devices are designed to meet the DC specifications shown in this table, after thermal equilibrium has been established. The circuit is in
a test socket or mounted on a printed circuit board and transverse air flow greater than 500 LFPM is maintained.
[2]
Input and output parameters vary 1:1 with V
CC
. V
EE
can vary +0.125 V to
-
1.3 V.
[3]
All loading with 50
to V
CC
-
2 V.
[4]
V
IHCMR(min)
varies 1:1 with V
EE
, V
IHCMR(max)
varies 1:1 with V
CC
. The V
IHCMR
range is referenced to the most positive side of the
differential input signal.
Table 5:
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
V
CC
PECL mode power supply
V
EE
= 0 V
-
4.1
V
V
EE
NECL mode power supply
V
CC
= 0 V
-
-
4.1
V
V
I
PECL mode input voltage
V
EE
= 0 V; V
I
V
CC
-
4.1
V
NECL mode input voltage
V
CC
= 0 V; V
I
V
EE
-
-
4.1
V
I
out
output current
continuous
-
50
mA
surge
-
100
mA
I
BB
V
BB
source current
0
0.1
mA
T
amb
operating ambient temperature
-
40
+85
°
C
T
stg
storage temperature range
-
65
+150
°
C
R
th(j-a)
thermal resistance from junction to ambient
0 LFPM
-
140
°
C/W
500 LFPM
-
100
°
C/W
R
th(j-c)
thermal resistance from junction to case
23
41
°
C/W
T
sld
soldering temperature
-
265
°
C
Table 6:
PECL DC characteristics
[1]
V
CC
= 2.5 V; V
EE
= 0 V
[2]
Symbol
Parameter
Conditions
T
amb
=
-
40
°
C
T
amb
= +25
°
C
T
amb
= +85
°
C
Unit
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
I
EE
power supply current
45
60
75
45
60
75
45
60
75
mA
V
OH
HIGH-level output
voltage
[3]
1355 1480 1605 1355 1500 1605 1355 1510 1605 mV
V
OL
LOW-level output voltage
[3]
555
720
805
555
700
805
555
710
805
mV
V
IH
HIGH-level input voltage
single-ended
1335 -
1620 1335 -
1620 1275 -
1620 mV
V
IL
LOW-level input voltage
single-ended
555
-
875
555
-
875
555
-
875
mV
V
IHCMR
HIGH-level input voltage,
common mode range
(differential)
[4]
1.2
-
2.5
1.2
-
2.5
1.2
-
2.5
V
I
IH
HIGH-level input current
-
-
150
-
-
150
-
-
150
µ
A
I
IL
LOW-level input current
CLK
0.5
-
-
0.5
-
-
0.5
-
-
µ
A
CLK
-
150 -
-
-
150 -
-
-
150 -
-
µ
A
V
BB
output reference voltage
1075 1165 1265 1065 1165 1265 1085 1180 1270 mV
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
6 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
[1]
Devices are designed to meet the DC specifications shown in this table, after thermal equilibrium has been established. The circuit is in
a test socket or mounted on a printed circuit board and transverse air flow greater than 500 LFPM is maintained.
[2]
Input and output parameters vary 1:1 with V
CC
. V
EE
can vary +0.925 V to
-
0.5 V.
[3]
All loading with 50
to V
CC
-
2 V.
[4]
Single-ended input operation is limited to V
CC
3.0 V in PECL mode.
[5]
V
IHCMR(min)
varies 1:1 with V
EE
, V
IHCMR(max)
varies 1:1 with V
CC
. The V
IHCMR
range is referenced to the most positive side of the
differential input signal.
Table 7:
PECL DC characteristics
[1]
V
CC
= 3.3 V; V
EE
= 0 V
[2]
Symbol
Parameter
Conditions
T
amb
=
-
40
°
C
T
amb
= +25
°
C
T
amb
= +85
°
C
Unit
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
I
EE
power supply current
45
60
75
45
60
75
45
60
75
mA
V
OH
HIGH-level output
voltage
[3]
2155 2280 2405 2155 2300 2405 2155 2310 2405 mV
V
OL
LOW-level output
voltage
[3]
1355 1515 1605 1355 1500 1605 1355 1500 1605 mV
V
IH
HIGH-level input
voltage
single-ended
2135 -
2420 2135 -
2420 2135 -
2420 mV
V
IL
LOW-level input voltage single-ended
1355 -
1675 1355 -
1675 1355 -
1675 mV
V
BB
output reference
voltage
[4]
1875 1965 2065 1865 1965 2065 1885 1980 2070 mV
V
IHCMR
HIGH-level input
voltage, common mode
range (differential)
[5]
1.2
-
3.3
1.2
-
3.3
1.2
-
3.3
V
I
IH
HIGH-level input current
-
-
150
-
-
150
-
-
150
µ
A
I
IL
LOW-level input current
CLK
0.5
-
-
0.5
-
-
0.5
-
-
µ
A
CLK
-
150 -
-
-
150 -
-
-
150 -
-
µ
A
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
7 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
[1]
Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 LFPM is maintained.
[2]
Input and output parameters vary 1:1 with V
CC
. V
EE
can vary +0.925 V to
-
0.5 V.
[3]
All loading with 50
to V
CC
-
2 V.
[4]
Single-ended input operation is limited to V
EE
3.0 V in NECL mode.
[5]
V
IHCMR(min)
varies 1:1 with V
EE
, V
IHCMR(max)
varies 1:1 with V
CC
. The V
IHCMR
range is referenced to the most positive side of the
differential input signal.
Table 8:
NECL DC characteristics
[1]
V
CC
= 0 V; V
EE
=
-
3.8 V to
-
2.375 V
[2]
Symbol Parameter
Conditions
T
amb
=
-
40
°
C
T
amb
= +25
°
C
T
amb
= +85
°
C
Unit
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
I
EE
power supply
current
45
60
75
45
60
75
45
60
95
mA
V
OH
HIGH-level output
voltage
[3]
-
1145
-
1020
-
895
-
1145
-
1000
-
895
-
1145
-
990
-
895
mV
V
OL
LOW-level output
voltage
[3]
-
1945
-
1785
-
1695
-
1945
-
1800
-
1695
-
1945
-
1800
-
1695 mV
V
IH
HIGH-level input
voltage
single-ended
-
1165 -
-
880
-
1165 -
-
880
-
1165 -
-
880
mV
V
IL
LOW-level input
voltage
single-ended
-
1945 -
-
1625
-
1945 -
-
1625
-
1945 -
-
1625 mV
V
BB
output reference
voltage
[4]
-
1425
-
1335
-
1235
-
1435
-
1335
-
1235
-
1415
-
1320
-
1230 mV
V
IHCMR
HIGH-level input
voltage, common
mode range
(differential)
[5]
V
EE
+1.2
0
V
EE
+1.2
0
V
EE
+1.2
0
V
I
IH
HIGH-level input
current
-
-
150
-
-
150
-
-
150
µ
A
I
IL
LOW-level input
current
CLK
0.5
-
-
0.5
-
-
0.5
-
-
µ
A
CLK
-
150
-
-
-
150
-
-
-
150
-
-
µ
A
Table 9:
HSTL DC characteristics
V
CC
= 2.375 V to 3.8 V; V
EE
= 0 V.
Symbol Parameter
Conditions
T
amb
=
-
40
°
C
T
amb
= +25
°
C
T
amb
= +85
°
C
Unit
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
V
IH
HIGH-level input
voltage
1200
-
-
1200
-
-
1200
-
-
mV
V
IL
LOW-level input
voltage
-
-
400
-
-
400
-
-
400
mV
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
8 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
10. Dynamic characteristics
[1]
Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50
to V
CC
-
2.0 V.
[2]
Skew is measured between outputs under identical transitions.
Table 10:
AC characteristics
(V
CC
= 0 V; V
EE
=
-
2.375 V to
-
3.8 V) or (V
CC
= 2.375 V to 3.8 V; V
EE
= 0 V)
[1]
Symbol
Parameter
Conditions
T
amb
=
-
40
°
C
T
amb
= +25
°
C
T
amb
= +85
°
C
Unit
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
f
max(PECL/
HSTL)
maximum toggle
frequency
see
Figure 4
-
> 2
-
-
> 2
-
-
> 2
-
GHz
t
PLH
, t
PHL
propagation delay to
output differential
250
345
425
275
360
475
300
430
525
ps
t
SKEW
skew time
within-device
-
10
25
-
15
25
-
15
25
ps
part-to-part
[2]
-
100
125
-
150
175
-
200
225
ps
t
JITTER
cycle-to-cycle jitter
see
Figure 4
-
0.2
< 1
-
0.2
< 1
-
0.2
< 1
ps
t
su
EN set-up time
100
50
-
100
50
-
100
50
-
ps
t
h
EN hold time
200
140
-
200
140
-
200
140
-
ps
V
i(p-p)
minimum input swing
150
800
1200
150
800
1200
150
800
1200 mV
t
r
/t
f
output rise/fall times
(20% - 80%)
125
205
250
125
200
250
125
200
275
ps
Fig 4.
f
max
.
900
800
700
600
500
400
300
200
100
0
9
8
7
6
5
4
3
2
1
0
0
1000
2000
3000
4000
V
OUT(p-p)
(mV)
002aaa223
FREQUENCY (MHz)
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
9 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
11. Application information
V
TT
= V
CC
-
2.0 V.
Fig 5.
Typical termination for output driver and device evaluation.
D
D
Q
Q
RECEIVER
DEVICE
DRIVER
DEVICE
VTT
50
50
002aaa220
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
10 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
12. Package outline
Fig 6.
SO20 package outline (SOT163-1).
UNIT
A
max.
A
1
A
2
A
3
b
p
c
D
(1)
E
(1)
(1)
e
H
E
L
L
p
Q
Z
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
mm
inches
2.65
0.30
0.10
2.45
2.25
0.49
0.36
0.32
0.23
13.0
12.6
7.6
7.4
1.27
10.65
10.00
1.1
1.0
0.9
0.4
8
0
o
o
0.25
0.1
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
1.1
0.4
SOT163-1
10
20
w
M
b
p
detail X
Z
e
11
1
D
y
0.25
075E04
MS-013
pin 1 index
0.10
0.012
0.004
0.096
0.089
0.019
0.014
0.013
0.009
0.51
0.49
0.30
0.29
0.050
1.4
0.055
0.419
0.394
0.043
0.039
0.035
0.016
0.01
0.25
0.01
0.004
0.043
0.016
0.01
0
5
10 mm
scale
X
A
A
1
A
2
H
E
L
p
Q
E
c
L
v
M
A
(A )
3
A
SO20: plastic small outline package; 20 leads; body width 7.5 mm
SOT163-1
97-05-22
99-12-27
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
11 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Fig 7.
TSSOP20 package outline (SOT360-1).
UNIT
A
1
A
2
A
3
b
p
c
D
(1)
E
(2)
(1)
e
H
E
L
L
p
Q
Z
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
mm
0.15
0.05
0.95
0.80
0.30
0.19
0.2
0.1
6.6
6.4
4.5
4.3
0.65
6.6
6.2
0.4
0.3
0.5
0.2
8
0
o
o
0.13
0.1
0.2
1.0
DIMENSIONS (mm are the original dimensions)
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
0.75
0.50
SOT360-1
MO-153
95-02-04
99-12-27
w
M
b
p
D
Z
e
0.25
1
10
20
11
pin 1 index
A
A
1
A
2
L
p
Q
detail X
L
(A )
3
H
E
E
c
v
M
A
X
A
y
0
2.5
5 mm
scale
TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm
SOT360-1
A
max.
1.10
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
12 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
13. Soldering
13.1 Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology. A more in-depth account
of soldering ICs can be found in our
Data Handbook IC26; Integrated Circuit
Packages (document order number 9398 652 90011).
There is no soldering method that is ideal for all surface mount IC packages. Wave
soldering can still be used for certain surface mount ICs, but it is not suitable for fine
pitch SMDs. In these situations reflow soldering is recommended.
13.2 Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and
binding agent) to be applied to the printed-circuit board by screen printing, stencilling
or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, convection or convection/infrared
heating in a conveyor type oven. Throughput times (preheating, soldering and
cooling) vary between 100 and 200 seconds depending on heating method.
Typical reflow peak temperatures range from 215 to 250
°
C. The top-surface
temperature of the packages should preferable be kept below 220
°
C for thick/large
packages, and below 235
°
C small/thin packages.
13.3 Wave soldering
Conventional single wave soldering is not recommended for surface mount devices
(SMDs) or printed-circuit boards with a high component density, as solder bridging
and non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically
developed.
If wave soldering is used the following conditions must be observed for optimal
results:
·
Use a double-wave soldering method comprising a turbulent wave with high
upward pressure followed by a smooth laminar wave.
·
For packages with leads on two sides and a pitch (e):
­ larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be
parallel to the transport direction of the printed-circuit board;
­ smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the
transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
·
For packages with leads on four sides, the footprint must be placed at a 45
°
angle
to the transport direction of the printed-circuit board. The footprint must
incorporate solder thieves downstream and at the side corners.
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
Product data
Rev. 01 -- 30 October 2002
13 of 15
9397 750 09565
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
During placement and before soldering, the package must be fixed with a droplet of
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the adhesive is cured.
Typical dwell time is 4 seconds at 250
°
C. A mildly-activated flux will eliminate the
need for removal of corrosive residues in most applications.
13.4 Manual soldering
Fix the component by first soldering two diagonally-opposite end leads. Use a low
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time
must be limited to 10 seconds at up to 300
°
C.
When using a dedicated tool, all other leads can be soldered in one operation within
2 to 5 seconds between 270 and 320
°
C.
13.5 Package related soldering information
[1]
For more detailed information on the BGA packages refer to the
(LF)BGA Application Note
(AN01026); order a copy from your Philips Semiconductors sales office.
[2]
All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the
maximum temperature (with respect to time) and body size of the package, there is a risk that internal
or external package cracks may occur due to vaporization of the moisture in them (the so called
popcorn effect). For details, refer to the Drypack information in the
Data Handbook IC26; Integrated
Circuit Packages; Section: Packing Methods.
[3]
These packages are not suitable for wave soldering. On versions with the heatsink on the bottom
side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with
the heatsink on the top side, the solder might be deposited on the heatsink surface.
[4]
If wave soldering is considered, then the package must be placed at a 45
°
angle to the solder wave
direction. The package footprint must incorporate solder thieves downstream and at the side corners.
[5]
Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it
is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
[6]
Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
14. Revision history
Table 11:
Suitability of surface mount IC packages for wave and reflow soldering
methods
Package
[1]
Soldering method
Wave
Reflow
[2]
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA
not suitable
suitable
HBCC, HBGA, HLQFP, HSQFP, HSOP,
HTQFP, HTSSOP, HVQFN, HVSON, SMS
not suitable
[3]
suitable
PLCC
[4]
, SO, SOJ
suitable
suitable
LQFP, QFP, TQFP
not recommended
[4][5]
suitable
SSOP, TSSOP, VSO
not recommended
[6]
suitable
Table 12:
Revision history
Rev Date
CPCN
Description
01
20021030
-
Product data (9397 750 09565)
Engineering Change Notice 853-2373 28877 (date: 20020909)
9397 750 09565
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
© Koninklijke Philips Electronics N.V. 2002. All rights reserved.
Product data
Rev. 01 -- 30 October 2002
14 of 15
Contact information
For additional information, please visit http://www.semiconductors.philips.com.
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.
Fax: +31 40 27 24825
15. Data sheet status
[1]
Please consult the most recently issued data sheet before initiating or completing a design.
[2]
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at
URL http://www.semiconductors.philips.com.
[3]
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
16. Definitions
Short-form specification -- The data in a short-form specification is
extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.
Limiting values definition -- Limiting values given are in accordance with
the Absolute Maximum Rating System (IEC 60134). Stress above one or
more of the limiting values may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or at any
other conditions above those given in the Characteristics sections of the
specification is not implied. Exposure to limiting values for extended periods
may affect device reliability.
Application information -- Applications that are described herein for any
of these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.
17. Disclaimers
Life support -- These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Right to make changes -- Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status `Production'),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no
licence or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are
free from patent, copyright, or mask work right infringement, unless otherwise
specified.
Level
Data sheet status
[1]
Product status
[2][3]
Definition
I
Objective data
Development
This data sheet contains data from the objective specification for product development. Philips
Semiconductors reserves the right to change the specification in any manner without notice.
II
Preliminary data
Qualification
This data sheet contains data from the preliminary specification. Supplementary data will be published
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in
order to improve the design and supply the best possible product.
III
Product data
Production
This data sheet contains data from the product specification. Philips Semiconductors reserves the
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant
changes will be communicated via a Customer Product/Process Change Notification (CPCN).
© Koninklijke Philips Electronics N.V. 2002.
Printed in the U.S.A
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner.
The information presented in this document does not form part of any quotation or
contract, is believed to be accurate and reliable and may be changed without notice. No
liability will be accepted by the publisher for any consequence of its use. Publication
thereof does not convey nor imply any license under patent- or other industrial or
intellectual property rights.
Date of release: 30 October 2002
Document order number: 9397 750 09565
Contents
Philips Semiconductors
PCKEP14
2.5 V/3.3 V 1:5 differential ECL/PECL/HSTL clock driver
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3
Pinning information . . . . . . . . . . . . . . . . . . . . . . 2
3.1
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2.1
Power supply connection . . . . . . . . . . . . . . . . . 2
4
Ordering information . . . . . . . . . . . . . . . . . . . . . 3
5
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6
Function table . . . . . . . . . . . . . . . . . . . . . . . . . . 4
7
Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5
9
Static characteristics. . . . . . . . . . . . . . . . . . . . . 5
10
Dynamic characteristics . . . . . . . . . . . . . . . . . . 8
11
Application information. . . . . . . . . . . . . . . . . . . 9
12
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 10
13
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
13.1
Introduction to soldering surface mount
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
13.2
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 12
13.3
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 12
13.4
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 13
13.5
Package related soldering information . . . . . . 13
14
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 13
15
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 14
16
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
17
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14