ChipFind - Datasheet

Part Number P82B96

Download:  PDF   ZIP
Philips
Semiconductors
P82B96
Dual bi-directional bus buffer
Product data
Supersedes data of 2003 Apr 02
2004 Mar 26
INTEGRATED CIRCUITS
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2
2004 Mar 26
FEATURES
Bi-directional data transfer of I
2
C-bus signals
Isolates capacitance allowing 400 pF on Sx/Sy side and
4000 pF on Tx/Ty side
Tx/Ty outputs have 60 mA sink capability for driving
low impedance or high capacitive buses
400 kHz operation over at least 20 meters of wire (see
AN10148)
Supply voltage range of 2 V to 15 V with I
2
C logic levels on Sx/Sy
side independent of supply voltage
Splits I
2
C signal into pairs of forward/reverse Tx/Rx, Ty/Ry signals
for interface with opto-electrical isolators and similar devices that
need uni-directional input and output signal paths.
Low power supply current
ESD protection exceeds 3500 V HBM per JESD22-A114,
250 V DIP package / 400 V SO package MM per JESD22-A115,
and 1000 V CDM per JESD22-C101
Latch-up free (bipolar process with no latching structures)
Packages offered: DIP, SO, and TSSOP
TYPICAL APPLICATIONS
Interface between I
2
C buses operating at different logic levels
(e.g., 5 V and 3 V or 15 V)
Interface between I
2
C and SMB (350
A) bus standard.
Simple conversion of I
2
C SDA or SCL signals to multi-drop
differential bus hardware, e.g., via compatible PCA82C250.
Interfaces with Opto-couplers to provide Opto isolation between
I
2
C-bus nodes up to 400 kHz.
DESCRIPTION
The P82B96 is a bipolar IC that creates a non-latching,
bi-directional, logic interface between the normal I
2
C-bus and a
range of other bus configurations. It can interface I
2
C-bus logic
signals to similar buses having different voltage and current levels.
For example it can interface to the 350
A SMB bus, to 3.3 V logic
devices, and to 15 V levels and/or low impedance lines to improve
noise immunity on longer bus lengths.
It achieves this interface without any restrictions on the normal I
2
C
protocols or clock speed. The IC adds minimal loading to the I
2
C
node, and loadings of the new bus or remote I
2
C nodes are not
transmitted or transformed to the local node. Restrictions on the
number of I
2
C devices in a system, or the physical separation
between them, are virtually eliminated. Transmitting SDA/SCL
signals via balanced transmission lines (twisted pairs) or with
galvanic isolation (opto-coupling) is simple because separate
directional Tx and Rx signals are provided. The Tx and Rx signals
may be directly connected, without causing latching, to provide an
alternative bi-directional signal line with I
2
C properties.
PIN CONFIGURATIONS
8-pin dual in-line, SO, TSSOP
1
2
3
4
5
6
7
8
Sx
Rx
Tx
GND
Ty
Ry
Sy
V
CC
SU01011
PINNING
มมมมมม
มมมมมม
SYMBOL
มมม
มมม
PIN
มมมมมมมมมม
มมมมมมมมมม
DESCRIPTION
มมมมมม
Sx
มมม
1
มมมมมมมมมม
I
2
C-bus (SDA or SCL)
มมมมมม
มมมมมม
Rx
มมม
มมม
2
มมมมมมมมมม
มมมมมมมมมม
Receive signal
มมมมมม
มมมมมม
Tx
มมม
มมม
3
มมมมมมมมมม
มมมมมมมมมม
Transmit signal
มมมมมม
มมมมมม
GND
มมม
มมม
4
มมมมมมมมมม
มมมมมมมมมม
Negative Supply
มมมมมม
มมมมมม
Ty
มมม
มมม
5
มมมมมมมมมม
มมมมมมมมมม
Transmit signal
มมมมมม
มมมมมม
Ry
มมม
มมม
6
มมมมมมมมมม
มมมมมมมมมม
Receive signal
มมมมมม
มมมมมม
Sy
มมม
มมม
7
มมมมมมมมมม
มมมมมมมมมม
I
2
C-bus (SDA or SCL)
มมมมมม
มมมมมม
V
CC
มมม
มมม
8
มมมมมมมมมม
มมมมมมมมมม
Positive supply
SPECIAL NOTE:
Two or more Sx or Sy I/Os must not be interconnected. The P82B96
design does not support this configuration. Bi-directional I
2
C signals
do not allow any direction control pin so, instead, slightly different
logic low voltage levels are used at Sx/Sy to avoid latching of this
buffer. A "regular I
2
C low" applied at the Rx/Ry of a P82B96 will be
propagated to Sx/Sy as a "buffered low" with a slightly higher
voltage level. If this special "buffered low" is applied to the Sx/Sy of
another P82B96 that second P82B96 will not recognize it as a
"regular I
2
C-bus low" and will not propagate it to its Tx/Ty output.
The Sx/Sy side of P82B96 may not be connected to similar buffers
that rely on special logic thresholds for their operation, for example
PCA9511, PCA9515, or PCA9518. The Sx/Sy side is only intended
for, and compatible with, the normal I
2
C logic voltage levels of I
2
C
master and slave chips--or even Tx/Rx signals of a second P82B96
if required. The Tx/Rx and Ty/Ry I/O pins use the standard I
2
C logic
voltage levels of all I
2
C parts. There are NO restrictions on the
interconnection of the Tx/Rx and Ty/Ry I/O pins to other P82B96s,
for example in a star or multi-point configuration with the Tx/Rx and
Ty/Ry I/O pins on the common bus and the Sx/Sy side connected to
the line card slave devices. For more details see
Application
Note AN255.
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
3
ORDERING INFORMATION
PACKAGES
TEMPERATURE RANGE
ORDER CODE
TOPSIDE MARK
DRAWING NUMBER
8-pin plastic dual In-line package
ญ40
C to +85
C
P82B96PN
P82B96PN
SOT97-1
8-pin plastic small outline package
ญ40
C to +85
C
P82B96TD
P82B96T
SOT96-1
8-pin plastic thin shrink small outline package
ญ40
C to +85
C
P82B96DP
82B96
SOT505-1
NOTE:
1. Standard packing quantities and other packaging data are available at www.philipslogic.com/packaging.
BLOCK DIAGRAM
P82B96
Sx (SDA)
Sy (SCL)
Ry (RxD, SCL)
Ty (TxD, SCL)
Rx (RxD, SDA)
Tx (TxD, SDA)
1
7
4
GND
6
5
2
3
8
+V
CC
(2ญ15 V)
SU01012
FUNCTIONAL DESCRIPTION
The P82B96 has two identical buffers allowing buffering of both of
the I
2
C (SDA and SCL) signals. Each buffer is made up of two logic
signal paths, a forward path from the I
2
C interface pin which drives
the buffered bus, and a reverse signal path from the buffered bus
input to drive the I
2
C-bus interface.
Thus these paths are:
1. Sense the voltage state of the I
2
C pin Sx (or Sy) and transmit
this state to the pin Tx (Ty resp.), and
2. Sense the state of the pin Rx (Ry) and pull the I
2
C pin LOW
whenever Rx (Ry) is LOW.
The rest of this discussion will address only the "x" side of the buffer:
the "y" side is identical.
The I
2
C pin (Sx) is designed to interface with a normal I
2
C-bus.
The logic threshold voltage levels on the I
2
C-bus are independent of
the IC supply V
CC
The maximum I
2
C-bus supply voltage is 15 V and
the guaranteed static sink current is 3 mA.
The logic level of Rx is determined from the power supply voltage
V
CC
of the chip. Logic LOW is below 42 % of V
CC
,
and logic HIGH is
above 58 % of V
CC
: with a typical switching threshold of half V
CC.
Tx is an open collector output without ESD protection diodes to V
CC
.
It may be connected via a pull-up resistor to a supply voltage in
excess of V
CC,
as long as the 15 V rating is not exceeded. It has a
larger current sinking capability than a normal I
2
C device, being able
to sink a static current of greater than 30 mA, and typical 100 mA
dynamic pull-down capability as well.
A logic LOW is only transmitted to Tx when the voltage at the I
2
C
pin (Sx) is below 0.6 V. A logic LOW at Rx will cause the I
2
C-bus
(Sx) to be pulled to a logic LOW level in accordance with I
2
C
requirements (max. 1.5 V in 5 V applications) but not low enough to
be looped back to the Tx output and cause the buffer to latch LOW.
The minimum LOW level this chip can achieve on the I
2
C-bus by a
LOW at Rx is typically 0.8 V.
If the supply voltage V
CC
fails, then neither the I
2
C nor the Tx output
will be held LOW. Their open collector configuration allows them to
be pulled up to the rated maximum of 15 V even without V
CC
present. The input configuration on Sx and Rx also present no
loading of external signals even when V
CC
is not present.
The effective input capacitance of any signal pin, measured by its
effect on bus rise times, is less than 7 pF for all bus voltages and
supply voltages including V
CC
= 0 V.
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
4
MAXIMUM RATINGS
In accordance with the Absolute Maximum Rating System (IEC 134).
Voltages with respect to pin GND (pin 4).
มมมมม
มมมมม
SYMBOL
มมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมม
PARAMETER
มมมม
มมมม
MIN.
มมมมม
มมมมม
MAX.
มมมม
มมมม
UNIT
มมมมม
มมมมม
V
CC
to GND
มมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมม
Supply voltage range V
CC
มมมม
มมมม
ญ0.3
มมมมม
มมมมม
+18
มมมม
มมมม
V
มมมมม
V
bus
มมมมมมมมมมมมมมมมมมมม
Voltage range on I
2
C Bus, SDA or SCL
มมมม
ญ0.3
มมมมม
+18
มมมม
V
มมมมม
มมมมม
V
Tx
มมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมม
Voltage range on buffered output
มมมม
มมมม
ญ0.3
มมมมม
มมมมม
+18
มมมม
มมมม
V
มมมมม
มมมมม
V
Rx
มมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมม
Voltage range on receive input
มมมม
มมมม
ญ0.3
มมมมม
มมมมม
+18
มมมม
มมมม
V
มมมมม
มมมมม
I
มมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมม
DC current (any pin)
มมมม
มมมม
--
มมมมม
มมมมม
250
มมมม
มมมม
mA
มมมมม
มมมมม
R
tot
มมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมม
Power dissipation
มมมม
มมมม
--
มมมมม
มมมมม
300
มมมม
มมมม
mW
มมมมม
มมมมม
T
stg
มมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมม
Storage temperature range
มมมม
มมมม
ญ55
มมมมม
มมมมม
+125
มมมม
มมมม
C
มมมมม
มมมมม
T
amb
มมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมม
Operating ambient temperature range
มมมม
มมมม
ญ40
มมมมม
มมมมม
+85
มมมม
มมมม
C
CHARACTERISTICS
At T
amb
= 25
C; Voltages are specified with respect to GND with V
CC
= 5 V unless otherwise stated.
มมมมม
มมมมม
SYMBOL
มมมมมมมมมมม
มมมมมมมมมมม
PARAMETER
มมมมมมมมมม
มมมมมมมมมม
CONDITIONS
มมมม
มมมม
MIN.
มมม
มมม
TYP.
มมม
มมม
MAX.
มมมม
มมมม
UNIT
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
Power Supply
มมมมม
มมมมม
V
CC
มมมมมมมมมมม
มมมมมมมมมมม
Supply voltage (operating)
มมมมมมมมมม
มมมมมมมมมม
มมมม
มมมม
2.0
มมม
มมม
--
มมม
มมม
15
มมมม
มมมม
V
มมมมม
มมมมม
I
CC
มมมมมมมมมมม
มมมมมมมมมมม
Supply current, buses HIGH
มมมมมมมมมม
มมมมมมมมมม
มมมม
มมมม
--
มมม
มมม
0.9
มมม
มมม
1.8
มมมม
มมมม
mA
มมมมม
I
CC
มมมมมมมมมมม
Supply current at V
CC
= 15 V, buses HIGH
มมมมมมมมมม
มมมม
--
มมม
1.1
มมม
2.5
มมมม
mA
มมมมม
มมมมม
I
CC
มมมมมมมมมมม
มมมมมมมมมมม
Additional supply current per Tx or Ty LOW
มมมมมมมมมม
มมมมมมมมมม
มมมม
มมมม
--
มมม
มมม
1.7
มมม
มมม
3.5
มมมม
มมมม
mA
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
Bus pull-up (load) voltages and currents
มมมมม
มมม
มมมมม
V
Sx
, V
Sy
มมมมมมมมมมม
มมมมมมมมม
มมมมมมมมมมม
Maximum input/output voltage level
มมมมมมมมมม
มมมมมมมม
มมมมมมมมมม
Open collector;
I
2
C-bus and V
Rx
, V
Ry
= HIGH
มมมม
มม
มมมม
--
มมม
มมม
--
มมม
มมม
15
มมมม
มม
มมมม
V
มมมมม
มมมมม
I
Sx
, I
Sy
มมมมมมมมมมม
มมมมมมมมมมม
Static output loading on I
2
C-bus (Note 1)
มมมมมมมมมม
มมมมมมมมมม
V
Sx
, V
Sy
= 1.0 V;
V
Rx
, V
Ry
= LOW
มมมม
มมมม
0.2
มมม
มมม
--
มมม
มมม
3
มมมม
มมมม
mA
มมมมม
มมม
มมมมม
I
Sx
, I
Sy
มมมมมมมมมมม
มมมมมมมมม
มมมมมมมมมมม
Dynamic output sink capability on I
2
C-bus
มมมมมมมมมม
มมมมมมมม
มมมมมมมมมม
V
Sx
, V
Sy
> 2 V;
V
Rx
, V
Ry
= LOW
มมมม
มม
มมมม
7
มมม
มมม
18
มมม
มมม
--
มมมม
มม
มมมม
mA
มมมมม
มมมมม
I
Sx
, I
Sy
มมมมมมมมมมม
มมมมมมมมมมม
Leakage current on I
2
C-bus
มมมมมมมมมม
มมมมมมมมมม
V
Sx
, V
Sy
= 5 V;
V
Rx
, V
Ry
= HIGH
มมมม
มมมม
--
มมม
มมม
--
มมม
มมม
1
มมมม
มมมม
A
มมมมม
มมม
มมมมม
I
Sx
, I
Sy
มมมมมมมมมมม
มมมมมมมมม
มมมมมมมมมมม
Leakage current on I
2
C-bus
มมมมมมมมมม
มมมมมมมม
มมมมมมมมมม
V
Sx
, V
Sy
= 15 V;
V
Rx
, V
Ry
= HIGH
มมมม
มม
มมมม
--
มมม
มมม
1
มมม
มมม
--
มมมม
มม
มมมม
A
มมมมม
มมมมม
V
Tx
, V
Ty
มมมมมมมมมมม
มมมมมมมมมมม
Maximum output voltage level
มมมมมมมมมม
มมมมมมมมมม
Open collector
มมมม
มมมม
--
มมม
มมม
--
มมม
มมม
15
มมมม
มมมม
V
มมมมม
มมมมม
I
Tx
, I
Ty
มมมมมมมมมมม
มมมมมมมมมมม
Static output loading on buffered bus
มมมมมมมมมม
มมมมมมมมมม
V
Tx
, V
Ty
= 0.4 V;
V
Sx
, V
Sy
= LOW on I
2
C-bus = 0.4 V
มมมม
มมมม
--
มมม
มมม
--
มมม
มมม
30
มมมม
มมมม
mA
มมมมม
มมม
มมมมม
I
Tx
, I
Ty
มมมมมมมมมมม
มมมมมมมมม
มมมมมมมมมมม
Dynamic output sink capability, buffered bus
มมมมมมมมมม
มมมมมมมม
มมมมมมมมมม
V
Tx
, V
Ty
> 1 V
V
Sx
, V
Sy
= LOW on I
2
C-bus = 0.4 V
มมมม
มม
มมมม
60
มมม
มมม
100
มมม
มมม
--
มมมม
มม
มมมม
mA
มมมมม
มมมมม
I
Tx
, I
Ty
มมมมมมมมมมม
มมมมมมมมมมม
Leakage current on buffered bus
มมมมมมมมมม
มมมมมมมมมม
V
Tx
, V
Ty
= V
CC
= 15 V;
V
Sx
, V
Sy
= HIGH
มมมม
มมมม
--
มมม
มมม
1
มมม
มมม
--
มมมม
มมมม
A
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
Input Currents
มมมมม
มมม
มมมมม
I
Sx
, I
Sy
มมมมมมมมมมม
มมมมมมมมม
มมมมมมมมมมม
Input current from I
2
C-bus
มมมมมมมมมม
มมมมมมมม
มมมมมมมมมม
bus LOW
V
Rx
, V
Ry
= HIGH
มมมม
มม
มมมม
--
มมม
มมม
ญ1
มมม
มมม
--
มมมม
มม
มมมม
A
มมมมม
มมมมม
I
Rx
, I
Ry
มมมมมมมมมมม
มมมมมมมมมมม
Input current from buffered bus
มมมมมมมมมม
มมมมมมมมมม
bus LOW
V
Rx
, V
Ry
= 0.4 V
มมมม
มมมม
--
มมม
มมม
ญ1
มมม
มมม
--
มมมม
มมมม
A
มมมมม
มมมมม
I
Rx
, I
Ry
มมมมมมมมมมม
มมมมมมมมมมม
Leakage current on buffered bus input
มมมมมมมมมม
มมมมมมมมมม
V
Rx
, V
Ry
= V
CC
มมมม
มมมม
--
มมม
มมม
1
มมม
มมม
--
มมมม
มมมม
A
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
Output Logic LOW Levels
มมมมม
มมมมม
V
Sx
, V
Sy
มมมมมมมมมมม
มมมมมมมมมมม
Output logic level LOW, on normal I
2
C bus
(Note 2)
มมมมมมมมมม
มมมมมมมมมม
I
Sx
, I
Sy
= 3 mA
มมมม
มมมม
0.8
มมม
มมม
0.88
มมม
มมม
1.0
มมมม
มมมม
V
มมมมม
มมม
มมมมม
V
Sx
, V
Sy
มมมมมมมมมมม
มมมมมมมมม
มมมมมมมมมมม
Output logic level LOW, on normal I
2
C bus
(Note 2)
มมมมมมมมมม
มมมมมมมม
มมมมมมมมมม
I
Sx
, I
Sy
= 0.2 mA
มมมม
มม
มมมม
670
มมม
มมม
730
มมม
มมม
790
มมมม
มม
มมมม
mV
มมมมม
มมมมม
dV
Sx
/dT,
dV
Sy
/dT
มมมมมมมมมมม
มมมมมมมมมมม
Temperature coefficient of output LOW
levels (Note 2)
มมมมมมมมมม
มมมมมมมมมม
I
Sx
, I
Sy
= 0.2 mA
มมมม
มมมม
--
มมม
มมม
ญ1.8
มมม
มมม
--
มมมม
มมมม
mV/K
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
5
มมมม
มมมม
UNIT
มมม
มมม
MAX.
มมม
มมม
TYP.
มมมม
มมมม
MIN.
มมมมมมมมมม
มมมมมมมมมม
CONDITIONS
มมมมมมมมมมม
มมมมมมมมมมม
PARAMETER
มมมมม
มมมมม
SYMBOL
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
Input logic switching threshold voltages
มมมมม
มมมมม
V
Sx
, V
Sy
มมมมมมมมมมม
มมมมมมมมมมม
Input logic voltage LOW (Note 3)
มมมมมมมมมม
มมมมมมมมมม
On normal I
2
C-bus
มมมม
มมมม
--
มมม
มมม
640
มมม
มมม
600
มมมม
มมมม
mV
มมมมม
มมมมม
V
Sx
, V
Sy
มมมมมมมมมมม
มมมมมมมมมมม
Input logic level HIGH threshold (Note 3)
มมมมมมมมมม
มมมมมมมมมม
On normal I
2
C-bus
มมมม
มมมม
700
มมม
มมม
650
มมม
มมม
--
มมมม
มมมม
mV
มมมมม
มมม
มมมมม
dV
Sx
/dT,
dV
Sy
/dT
มมมมมมมมมมม
มมมมมมมมม
มมมมมมมมมมม
Temperature coefficient of input thresholds
มมมมมมมมมม
มมมมมมมม
มมมมมมมมมม
มมมม
มม
มมมม
--
มมม
มมม
ญ2
มมม
มมม
--
มมมม
มม
มมมม
mV/K
มมมมม
มมมมม
V
Rx
, V
Ry
มมมมมมมมมมม
มมมมมมมมมมม
Input logic HIGH level
มมมมมมมมมม
มมมมมมมมมม
Fraction of applied V
CC
มมมม
มมมม
0.58
มมม
มมม
--
มมม
มมม
--
มมมม
มมมม
V
มมมมม
V
Rx
, V
Ry
มมมมมมมมมมม
Input threshold
มมมมมมมมมม
Fraction of applied V
CC
มมมม
--
มมม
0.5
มมม
--
มมมม
V
มมมมม
มมมมม
V
Rx
, V
Ry
มมมมมมมมมมม
มมมมมมมมมมม
Input logic LOW level
มมมมมมมมมม
มมมมมมมมมม
Fraction of applied V
CC
มมมม
มมมม
--
มมม
มมม
--
มมม
มมม
0.42
มมมม
มมมม
V
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
Logic level threshold difference
มมมมม
มมม
มมมมม
V
Sx
, V
Sy
มมมมมมมมมมม
มมมมมมมมม
มมมมมมมมมมม
Input/Output logic level difference (Note 1)
มมมมมมมมมม
มมมมมมมม
มมมมมมมมมม
V
SX
output LOW at 0.2 mA ญ
V
SX
input HIGH max
มมมม
มม
มมมม
50
มมม
มมม
85
มมม
มมม
--
มมมม
มม
มมมม
mV
NOTES:
1. The minimum value requirement for pull-up current, 200
A, guarantees that the minimum value for V
SX
output LOW will always exceed the
minimum V
SX
input HIGH level to eliminate any possibility of latching. The specified difference is guaranteed by design within any IC. While
the tolerances on absolute levels allow a small probability the LOW from one S
X
output is recognized by an S
X
input of another P82B96 this
has no consequences for normal applications. In any design the S
X
pins of different ICs should never be linked because the resulting system
would be very susceptible to induced noise and would not support all I
2
C operating modes.
2. The output logic LOW depends on the sink current. For scaling, see
Application Note AN255.
3. The input logic threshold is independent of the supply voltage.
CHARACTERISTICS
At T
amb
= 25
C; Voltages are specified with respect to GND with V
CC
= 5 V unless otherwise stated.
มมมมม
มมมมม
SYMBOL
มมมมมมมมมมมม
มมมมมมมมมมมม
PARAMETER
มมมมมมมม
มมมมมมมม
CONDITIONS
มมมม
มมมม
MIN.
มมมม
มมมม
TYP.
มมม
มมม
MAX.
มมมม
มมมม
UNIT
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
Bus Release on V
CC
Failure
มมมมม
มมม
มมมมม
V
Sx
, V
Sy
,
V
Tx
, V
Ty
มมมมมมมมมมมม
มมมมมมมมมม
มมมมมมมมมมมม
V
CC
voltage at which all buses are
guaranteed to be released
มมมมมมมม
มมมมมม
มมมมมมมม
มมมม
มม
มมมม
--
มมมม
มม
มมมม
--
มมม
มมม
1
มมมม
มม
มมมม
V
มมมมม
มมมมม
dV/dT
มมมมมมมมมมมม
มมมมมมมมมมมม
Temperature coefficient of guaranteed release
voltage
มมมมมมมม
มมมมมมมม
มมมม
มมมม
--
มมมม
มมมม
ญ4
มมม
มมม
--
มมมม
มมมม
mV/K
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
Buffer response time
มมมมม
มมม
มมมมม
T
fall delay
V
Sx
to V
Tx
V
Sy
to V
Ty
มมมมมมมมมมมม
มมมมมมมมมม
มมมมมมมมมมมม
Buffer time delay on FALLING input between
V
Sx
= input switching threshold,
and V
Tx
output falling 50%.
มมมมมมมม
มมมมมม
มมมมมมมม
R
Tx
pull-up = 160
,
no capacitive load, V
CC
= 5 V
มมมม
มม
มมมม
--
มมมม
มม
มมมม
70
มมม
มมม
--
มมมม
มม
มมมม
ns
มมมมม
มมม
มมม
มมมมม
T
rise delay
V
Sx
to V
Tx
V
Sy
to V
Ty
มมมมมมมมมมมม
มมมมมมมมมม
มมมมมมมมมม
มมมมมมมมมมมม
Buffer time delay on RISING input between
V
Sx
= input switching threshold,
and V
Tx
output reaching 50% V
CC
มมมมมมมม
มมมมมม
มมมมมม
มมมมมมมม
R
Tx
pull-up = 160
,
no capacitive load, V
CC
= 5 V
มมมม
มม
มม
มมมม
--
มมมม
มม
มม
มมมม
90
มมม
มมม
--
มมมม
มม
มม
มมมม
ns
มมมมม
มมม
มมม
มมมมม
T
fall delay
V
Rx
to V
Sx
V
Ry
to V
Sy
มมมมมมมมมมมม
มมมมมมมมมม
มมมมมมมมมม
มมมมมมมมมมมม
Buffer time delay on FALLING input between
V
Rx
= input switching threshold,
and V
Sx
output falling 50%.
มมมมมมมม
มมมมมม
มมมมมม
มมมมมมมม
R
Sx
pull-up = 1500
, no
capacitive load, V
CC
= 5 V
มมมม
มม
มม
มมมม
--
มมมม
มม
มม
มมมม
250
มมม
มมม
--
มมมม
มม
มม
มมมม
ns
มมมมม
มมม
มมมมม
T
rise delay
V
Rx
to V
Sx
V
Ry
to V
Sy
มมมมมมมมมมมม
มมมมมมมมมม
มมมมมมมมมมมม
Buffer time delay on RISING input between
V
Rx
= input switching threshold,
and V
Sx
output reaching 50% V
CC
มมมมมมมม
มมมมมม
มมมมมมมม
R
Sx
pull-up = 1500
,
no capacitive load, V
CC
= 5 V
มมมม
มม
มมมม
--
มมมม
มม
มมมม
270
มมม
มมม
--
มมมม
มม
มมมม
ns
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
มมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมมม
Input capacitance
มมมมม
มมมมม
C
in
มมมมมมมมมมมม
มมมมมมมมมมมม
Effective input capacitance of any signal pin
measured by incremental bus rise times
มมมมมมมม
มมมมมมมม
มมมม
มมมม
--
มมมม
มมมม
--
มมม
มมม
7
มมมม
มมมม
pF
NOTES ON RESPONSE TIME
The fall-time of V
TX
from 5 V to 2.5 V in the test is approximately 15 ns.
The fall-time of V
SX
from 5 V to 2.5 V in the test is approximately 50 ns.
The rise-time of V
TX
from 0 V to 2.5 V in the test is approximately 20 ns.
The rise-time of V
SX
from 0.9 V to 2.5 V in the test is approximately 70 ns.
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
6
TYPICAL APPLICATIONS
See
AN460 and AN255 for more application detail.
I
2
C
SDA
+5 V
+V
CC
(2ญ15 V)
R1
`SDA'
(NEW LEVELS)
1/2 PB2B96
Rx
(SDA)
Tx
(SDA)
SU01013
Figure 1. Interfacing an `I
2
C' type of bus with different logic levels.
+5 V
1/2 P82B96
SU01014
I
2
C
SDA
R1
Tx
(SDA)
Rx
(SDA)
R2
R3
+V
CC
+V
CC1
R4
R5
I
2
C
SDA
Figure 2. Galvanic isolation of I
2
C nodes via opto-couplers
SCL
SCL
SDA
SDA
P82B96
P82B96
MAIN ENCLOSURE
REMOTE CONTROL ENCLOSURE
3.3ญ5 V
3.3ญ5 V
12 V
12 V
12 V
LONG CABLES
SU01708
3.3ญ5 V
3.3ญ5 V
Figure 3. Long distance I
2
C communications
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
7
SCL
SCL
SDA
SDA
P82B96
3 ญ 20 m CABLES
su01785
P82B96
V
CC1
+V CABLE DRIVE
V
CC
I
2
C/DDC
MASTER
GND
S
X
S
Y
R
X
T
X
R
Y
T
Y
BC
847B
470 k
4K7
I
2
C/DDC
R
X
T
X
R
Y
T
Y
V
CC
V
CC1
V
CC2
S
X
S
Y
GND
I
2
C/DDC
SLAVE
PC/TV RECEIVER/DECODER BOX
MONITOR/FLAT TV
VIDEO SIGNALS
R
G
B
100 k
BC
847B
100 nF
470 k
+V CABLE DRIVE
Figure 4. Extending a DCC bus
Figure 4 shows how a master I
2
C-bus can be protected against
short circuits or failures in applications that involve plug/socket
connections and long cables that may become damaged. A simple
circuit is added to monitor the SDA bus and if its LOW time exceeds
the design value then the master bus is disconnected. P82B96 will
free all its I/Os if its supply is removed, so one option is to connect
its V
CC
to the output of a logic gate from, say, the 74LVC family. The
SDA and SCL lines could be timed and V
CC
disabled via the gate if
one or other lines exceeds a design value of `LOW' period as in
Figure 28 of AN255. If the supply voltage of logic gates restricts the
choice of V
CC
supply then the low-cost discrete circuit in Figure 4
can be used. If the SDA line is held LOW, the 100 nF capacitor will
charge and the R
y
input will be pulled towards V
CC
. When it
exceeds V
CC
/2 the R
y
input will set the S
y
input HIGH, which in
practice means simply releasing it.
In this example the SCL line is made uni-directional by tying the R
x
pin to V
CC
. The state of the buffered SCL line cannot affect the
master clock line which is allowed when clock-stretching is not
required. It is simple to add an additional transistor or diode to
control the R
x
input in the same way as R
y
when necessary. The +V
cable drive can be any voltage up to 15 V and the bus may be run at
a lower impedance by selecting pull-up resistors for a static sink
current up to 30 mA. V
CC1
and V
CC2
may be chosen to suit the
connected devices. Because DDC uses relatively low speeds
(<100 kHz), the cable length is not restricted to 20 m by the I
2
C
signalling, but it may be limited by the video signalling.
Figure 5 shows that P82B96 can achieve high clock rates over long
cables. While calculating with lumped wiring capacitance yields
reasonable approximations to actual timing, even 25 meters of cable
is better treated using transmission line theory. Flat ribbon cables
connected as shown, with the bus signals on the outer edge, will
have a characteristic impedance in the range 100 ญ 200
. For
simplicity they cannot be terminated in their characteristic
impedance but a practical compromise is to use the minimum
pull-up allowed for P82B96 and place half this termination at each
end of the cable. When each pull-up is below 330
, the rising edge
waveforms have their first voltage `step' level above the logic
threshold at Rx and cable timing calculations can be based on the
fast rise/fall times of resistive loading plus simple one-way
propagation delays. When the pull-up is larger, but below 750
, the
threshold at Rx will be crossed after one signal reflection. So at the
sending end it is crossed after 2 times the one-way propagation
delay and at the receiving end after 3 times that propagation delay.
For flat cables with partial plastic dielectric insulation (by using outer
cores) the one-way propagation delays will be about 5 ns/meter.
The 10% to 90% rise and fall times on the cable will be between
20 ns and 50 ns, so their delay contributions are small. There will be
ringing on falling edges that can be damped, if required, using
Schottky diodes as shown.
When the Master SCL HIGH and LOW periods can be programmed
separately, e.g. using control registers I2SCLH and I2SCLL of
89LPC932, the timings can allow for bus delays. The LOW period
should be programmed to achieve the minimum 1300 ns plus the
net delay in the slave's response data signal caused by bus and
buffer delays. The longest data delay is the sum of the delay of the
falling edge of SCL from master to slave and the delay of the rising
edge of SDA from slave data to master. Because the buffer will
`stretch' the programmed SCL LOW period, the actual SCL
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
8
frequency will be lower than calculated from the programmed clock
periods. In the example for 25 meters the clock is stretched 400 ns,
the falling edge of SCL is delayed 490 ns and the SDA rising edge is
delayed 570 ns. The required additional LOW period is
(490 + 570) = 1060 ns and the I
2
C-bus specifications already
include an allowance for a worst case bus risetime 0 to 70% of
425 ns. (The bus risetime can be 300 ns 30% to 70%, which means
it can be 425 ns 0ญ70%. The 25-meter cable delay times as quoted
already include all rise/fall times.) Therefore, the micro only needs to
be programmed with an addtional (1060 ญ 400 ญ 425) = 235 ns,
making a total programmed LOW period 1535 ns. The programmed
LOW will the be stretched by 400 ns to yield an actual bus LOW
time of 1935 ns, which, allowing the minimum HIGH period of
600 ns, yields a cycle period of 2535 ns or 394 kHz.
Note that in both the 100-meter and 250-meter examples the
capacitive loading on the I
2
C-buses at each end is within the
maximum allowed Standard mode loading of 400 pF, but exceeds
the Fast mode limit. This is an example of a `hybrid' mode because it
relies on the response delays of Fast mode parts but uses
(allowable) Standard mode bus loadings with rise times that
contribute significantly to the system delays. The cables cause large
propagation delays so these systems need to operate well below the
400 kHz limit but illustrate how they can still exceed the 100 kHz
limit provided all parts are capable of Fast mode operation. The
fastest example illustrates how the 400 kHz limit can be exceeded
provided master and slave parts have delay specifications smaller
than the maximum allowed. Many Philips slaves have delays shorter
than 600 ns, but none have that guaranteed.
SCL
SDA
su01786
P82B96
V
CC
I
2
C
MASTER
GND
S
X
S
Y
R
X
T
X
R
Y
T
Y
V
CC1
V
CC2
SCL
SDA
P82B96
V
CC
I
2
C
SLAVE(S)
GND
S
X
S
Y
R
X
T
X
R
Y
T
Y
R1
R1
R2
R2
C2
C2
BAT54A
BAT54A
C2
C2
R2
R2
R1
R1
CABLE
PROPAGATION
DELAY
'
5 ns/m
+V CABLE DRIVE
Figure 5. Driving ribbon or flat telephone cables
EXAMPLES OF BUS CAPABILITY (refer to Figure 5)
+V
CC
+V
+V
CC
R1
R2
C2
CABLE
CABLE
CABLE
SET MASTER
NOMINAL SCL
EFFECTIVE
BUS
MAXIMUM
SLAVE
+V
CC1
CABLE
+V
CC2
R1
R2
(pF)
LENGTH
CAPACITANCE
DELAY
HIGH
PERIOD
LOW
PERIOD
CLOCK
SPEED
RESPONSE
DELAY
5 V
12 V
5 V
750
2.2 k
400
250 m
Not applicable
(delay based)
1.25
s
600 ns
4000 ns
120 kHz
Normal spec.
400 kHz
parts
5 V
12 V
5 V
750
2.2 k
220
100 m
Not applicable
(delay based)
500 ns
600 ns
2600 ns
185 kHz
Normal spec.
400 kHz
parts
3.3 V
5 V
3.3 V
330
1 k
220
25 m
1 nF
125 ns
600 ns
1500 ns
390 kHz
Normal spec.
400 kHz
parts
3.3 V
5 V
3.3 V
330
1 k
100
3 m
120 pF
15 ns
600 ns
1000 ns
500 kHz
600 ns
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
9
CALCULATING SYSTEM DELAYS AND BUS CLOCK FREQUENCY FOR A FAST MODE SYSTEM
Cm = MASTER BUS
CAPACITANCE
Cb = BUFFERED BUS
WIRING CAPACITANCE
Cs = SLAVE BUS
CAPACITANCE
MASTER
I
2
C
I
2
C
SLAVE
P82B96
P82B96
V
CCM
SCL
Rm
Rb
Rs
V
CCS
SCL
Sx
Tx/Rx
Tx/Rx
Sx
GND/0 V
A)
FALLING EDGE OF SCL AT MASTER IS DELAYED BY THE BUFFERS AND BUS FALL TIMES
EFFECTIVE DELAY OF SCL AT SLAVE = 255 + 17 V
CCM
+ (2.5 + 4
10
9
Cb) V
CCB
(ns)
C = F,
V = VOLTS
LOCAL MASTER BUS
BUFFERED EXPANSION BUS
REMOTE SLAVE BUS
su01787
V
CCB
Figure 6.
Cm = MASTER BUS
CAPACITANCE
Cb = BUFFERED BUS
WIRING CAPACITANCE
MASTER
I
2
C
P82B96
V
CCM
SCL
Rm
Rb
Sx
Tx/Rx
Tx/Rx
GND/0 V
B)
RISING EDGE OF SCL AT MASTER IS DELAYED (CLOCK STRETCH) BY BUFFER AND BUS RISE TIMES
EFFECTIVE DELAY OF SCL AT MASTER = 270 + RmCm + 0.7RbCb (ns),
C = F,
R =
LOCAL MASTER BUS
BUFFERED EXPANSION BUS
su01788
V
CCB
Figure 7.
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
10
Cm = MASTER BUS
CAPACITANCE
Cb = BUFFERED BUS
WIRING CAPACITANCE
Cs = SLAVE BUS
CAPACITANCE
MASTER
I
2
C
I
2
C
SLAVE
P82B96
P82B96
V
CCM
SDA
Rm
Rb
Rs
V
CCS
SDA
Sx
Tx/Rx
Tx/Rx
Sx
GND/0 V
C)
RISING EDGE OF SDA AT SLAVE IS DELAYED BY THE BUFFERS AND BUS RISE TIMES
EFFECTIVE DELAY OF SDA AT MASTER = 270 + 0.2RsCs + 0.7 (RbCb + RmCm) (ns),
C = F,
R =
LOCAL MASTER BUS
BUFFERED EXPANSION BUS
REMOTE SLAVE BUS
su01789
V
CCB
Figure 8.
Figures 6, 7, and 8 show the P82B96 used to drive extended bus
wiring, with relatively large capacitance, linking two Fast mode
I
2
C-bus nodes. It includes simplified expressions for making the
relevant timing calculations for 3.3/5 V operation. Because the
buffers and the wiring introduce timing delays, it may be necessary
to decrease the nominal SCL frequency below 400 kHz. In most
cases the actual bus frequency will be lower than the nominal
Master timing due to bit-wise stretching of the clock periods.
The delay factors involved in calculation of the allowed bus speed
are:
A) The propagation delay of the Master signal through the buffers
and wiring to the Slave. The important delay is that of the falling
edge of SCL because this edge `requests' the data or
Acknowledge from a Slave.
B) The effective stretching of the nominal LOW period of SCL at the
Master caused by the buffer and bus rise times
C) The propagation delay of the Slave's response signal through the
buffers and wiring back to the Master. The important delay is
that of a rising edge in the SDA signal. Rising edges are always
slower and are therefore delayed by a longer time than falling
edges. (The rising edges are limited by the passive pull-up while
falling edges are actively driven)
The timing requirement in any I
2
C system is that a Slave's data
response (which is provided in response to a falling edge of SCL)
must be received at the Master before the end of the corresponding
low period of SCL as appears on the bus wiring at the Master. Since
all Slaves will, as a minimum, satisfy the worst case timing
requirements of a 400 kHz part, they must provide their response
within the minimum allowed clock LOW period of 1300 ns. Therefore
in systems that introduce additional delays it is only necessary to
extend that minimum clock low period by any "effective" delay of the
Slave's response. The effective delay of the slaves response = total
delays in SCL falling edge from the Master reaching the Slave (A) ญ
the effective delay (stretch) of the SCL rising edge (B) + total delays
in the Slave's response data, carried on SDA, reaching the
Master (C).
The Master microcontroller should be programmed to produce a
nominal SCL LOW period = (1300 + A ญ B + C) ns, and should be
programmed to produce the nominal minimum SCL HIGH period of
600 ns. Then a check should be made to ensure the cycle time is
not shorter than the minimum 2500 ns. If found necessary, just
increase either clock period.
Due to clock stretching, the SCL cycle time will always be longer
than (600 + 1300 + A + C) ns.
Example:
The Master bus has an RmCm product of 100 ns and V
CCM
= 5 V.
The buffered bus has a capacitance of 1 nF and a pull-up resistor of
160 ohms to 5 V giving an RbCb product of 160 ns. The Slave bus
also has an RsCs product of 100 ns.
The microcontroller LOW period should be programmed to
(1300 + 372.5 ญ 482 + 472) ns, that is
1662.5 ns.
Its HIGH period may be programmed to the minimum 600 ns.
The nominal microcontroller clock period will be
(1662.5 + 600) ns = 2262.5 ns, equivalent to a frequency of
442 kHz.
The actual bus clock period, including the 482 ns clock stretch
effect, will be below (nominal + stretch) = (2262.5 + 482) ns or
2745 ns, equivalent to an allowable frequency of 364 kHz.
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
11
SCL
SDA
P82B96
3.3ญ5 V
3.3ญ5 V
12 V
12 V
P82B96
P82B96
P82B96
P82B96
SCL/SDA
3.3 V
3.3 V
12 V
su01709
TWISTED-PAIR TELEPHONE WIRES,
USB, OR FLAT RIBBON CABLES.
UP TO 15 V LOGIC LEVELS,
INCLUDE V
CC
AND GND.
NO LIMIT TO THE NUMBER OF CONNECTED BUS DEVICES.
S
Y
SDA
S
X
SCL
SCL/SDA
SCL/SDA
S
X
S
Y
S
X
S
Y
S
X
S
Y
S
X
S
Y
T
X
R
X
T
Y
R
Y
Figure 9. I
2
C multi-point applications
Horiz: 200 ns/div.
VertL 2 V/div.
10 V
5 V
0 V
Tx
Sx
ch1: freq = 624 kHz
SU01069
CH1!2.00V = AVG
CH2!2.00V = BWL MTB 200 ns ญ 0.98dvch1+
Figure 10. Propagation Sx to Tx -- Sx pull-up to 5V,
Tx pull-up to V
CC
= 10 V
Horiz: 200 ns/div.
VertL 2 V/div.
Sx
ch1: freq = 624 kHz
SU01070
CH1!2.00V = AVG
CH2!2.00V = BWL MTB 200 ns ญ 0.98dvch1+
Rx
Figure 11. Propagation Rx to Sx -- Sx pull-up to 5V,
Rx pull-up to V
CC
= 10 V
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
12
SO8:
plastic small outline package; 8 leads; body width 3.9 mm
SOT96-1
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
13
DIP8:
plastic dual in-line package; 8 leads (300 mil)
SOT97-1
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
14
TSSOP8:
plastic thin shrink small outline package; 8 leads; body width 3 mm
SOT505-1
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
15
REVISION HISTORY
Rev
Date
Description
_4
20040326
Product data (9397 750 12932). Supersedes data of 2003 Apr 02 (9397 750 11351).
Modifications:
Page 2:
Features section re-written.
Add "TSSOP" to heading for pin configurations
Page 3, Ordering information table: correct description of TSSOP8 package.
Page 5, (continued) Characteristics table, Note 1,
third sentence:
from "... the LOW from on S
X
output ..."
to "... the LOW from one S
X
output ..."
fourth sentence:
from "In any design the S
X
pins of different ICs because the resulting ..."
to "In any design the S
X
pins of different ICs should never be linked because the resulting ..."
Figure 4: Change 2 transistors to bipolar type. Add dashed line between V
CC1
and V
CC
, and between V
CC2
and V
CC
to indicate optional/allowed links.
Figure 5: Add dashed line between V
CC1
and V
CC
, and between V
CC2
and V
CC
to indicate optional/allowed
links.
Page 8, table "Examples of bus capability":
cable capacitance 1 nF:
change LOW period from "1600 ns" to "1500 ns"
change Effective bus clock speed from "380 kHz" to "390 kHz"
change cable capacitance "120 nF" to "120 pF"
Add title "Calculating system delays and bus clock frequency for a Fast mode system" on page 9.
Add V
CCB
label to Figures 6, 7 and 8.
Page 10, "Example:" paragraphs 3, 5 and 6: values corrected in equations.
Add signal names to Figure 9.
Add package outline drawing SOT505-1.
_3
20030402
Product data (9397 750 11351); ECN 853-2241 29602 dated 28 February 2003.
Supersedes data of 2003 Jan 22 (9397 750 11093)
_2
20030226
Product data (9397 750 11093); ECN 853-2241 29410 of 22 January 2003;
supersedes data of 2001 Mar 06 (9397 750 08122)
_1
20010306
Product data (9397 750 08122); ECN 853-2241 25758 of 2001 Mar 06.
Philips Semiconductors
Product data
P82B96
Dual bi-directional bus buffer
2004 Mar 26
16
Purchase of Philips I
2
C components conveys a license under the Philips' I
2
C patent
to use the components in the I
2
C system provided the system conforms to the
I
2
C specifications defined by Philips. This specification can be ordered using the
code 9398 393 40011.
Definitions
Short-form specification -- The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see
the relevant data sheet or data handbook.
Limiting values definition -- Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given
in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information -- Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no
representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Disclaimers
Life support -- These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be
expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree
to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes -- Philips Semiconductors reserves the right to make changes in the products--including circuits, standard cells, and/or software--described
or contained herein in order to improve design and/or performance. When the product is in full production (status `Production'), relevant changes will be communicated
via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys
no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent,
copyright, or mask work right infringement, unless otherwise specified.
Contact information
For additional information please visit
http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.
Koninklijke Philips Electronics N.V. 2004
All rights reserved. Printed in U.S.A.
Date of release: 03-04
Document order number:
9397 750 12932
Philips
Semiconductors
Data sheet status
[1]
Objective data
Preliminary data
Product data
Product
status
[2] [3]
Development
Qualification
Production
Definitions
This data sheet contains data from the objective specification for product development.
Philips Semiconductors reserves the right to change the specification in any manner without notice.
This data sheet contains data from the preliminary specification. Supplementary data will be published
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in
order to improve the design and supply the best possible product.
This data sheet contains data from the product specification. Philips Semiconductors reserves the
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant
changes will be communicated via a Customer Product/Process Change Notification (CPCN).
Data sheet status
[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL
http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
Level
I
II
III