ChipFind - Datasheet

Part Number IRF530N

Download:  PDF   ZIP
Äîêóìåíòàöèÿ è îïèñàíèÿ www.docs.chipfind.ru
background image
IRF530N
HEXFET
®
Power MOSFET
3/16/01
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
­­­
2.15
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
­­­
°C/W
R
JA
Junction-to-Ambient
­­­
62
Thermal Resistance
www.irf.com
1
V
DSS
= 100V
R
DS(on)
= 90m
I
D
= 17A
S
D
G
TO-220AB
Advanced HEXFET
®
Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220 contribute
to its wide acceptance throughout the industry.
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175°C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
Description
PD - 91351
Absolute Maximum Ratings
Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
17
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
12
A
I
DM
Pulsed Drain Current
60
P
D
@T
C
= 25°C
Power Dissipation
70
W
Linear Derating Factor
0.47
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
I
AR
Avalanche Current
9.0
A
E
AR
Repetitive Avalanche Energy
7.0
mJ
dv/dt
Peak Diode Recovery dv/dt
7.4
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
°C
Mounting torque, 6-32 or M3 srew
10 lbf·in (1.1N·m)
background image
IRF530N
2
www.irf.com
S
D
G
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
­­­
­­­
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
­­­
­­­
p-n junction diode.
V
SD
Diode Forward Voltage
­­­
­­­
1.3
V
T
J
= 25°C, I
S
= 9.0A, V
GS
= 0V
t
rr
Reverse Recovery Time
­­­
93
140
ns
T
J
= 25°C, I
F
= 9.0A
Q
rr
Reverse Recovery Charge
­­­
320
480
nC
di/dt = 100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
17
60
A
Starting T
J
= 25°C, L = 2.3mH
R
G
= 25
, I
AS
= 9.0A, V
GS
=10V (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
Notes:
I
SD
9.0A, di/dt
410A/µs, V
DD
V
(BR)DSS
,
T
J
175°C
Pulse width
400µs; duty cycle
2%.
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to T
J
= 175°C .
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
­­­
­­­
V
V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
­­­
0.11
­­­
V/°C
Reference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
­­­
­­­
90
m
V
GS
= 10V, I
D
= 9.0A
V
GS(th)
Gate Threshold Voltage
2.0
­­­
4.0
V
V
DS
= V
GS
, I
D
= 250µA
g
fs
Forward Transconductance
12
­­­
­­­
S
V
DS
= 50V, I
D
= 9.0A
­­­
­­­
25
µA
V
DS
= 100V, V
GS
= 0V
­­­
­­­
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150°C
Gate-to-Source Forward Leakage
­­­
­­­
100
V
GS
= 20V
Gate-to-Source Reverse Leakage
­­­
­­­
-100
nA
V
GS
= -20V
Q
g
Total Gate Charge
­­­
­­­
37
I
D
= 9.0A
Q
gs
Gate-to-Source Charge
­­­
­­­
7.2
nC
V
DS
= 80V
Q
gd
Gate-to-Drain ("Miller") Charge
­­­
­­­
11
V
GS
= 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
­­­
9.2
­­­
V
DD
= 50V
t
r
Rise Time
­­­
22
­­­
I
D
= 9.0A
t
d(off)
Turn-Off Delay Time
­­­
35
­­­
R
G
= 12
t
f
Fall Time
­­­
25
­­­
V
GS
= 10V, See Fig. 10
Between lead,
­­­
­­­
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
­­­
920
­­­
V
GS
= 0V
C
oss
Output Capacitance
­­­
130
­­­
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
­­­
19
­­­
pF
= 1.0MHz, See Fig. 5
E
AS
Single Pulse Avalanche Energy
­­­
340
93
mJ
I
AS
= 9.0A, L = 2.3mH
nH
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance
­­­
­­­
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
background image
IRF530N
www.irf.com
3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
0.1
1
10
100
20µs PULSE WIDTH
T = 25 C
J
°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
0.1
1
10
100
20µs PULSE WIDTH
T = 175 C
J
°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
10
100
4.0
5.0
6.0
7.0
8.0
V = 50V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
°
T = 175 C
J
°
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V
=
I =
GS
D
10V
15A
background image
IRF530N
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
0
400
800
1200
1600
V , Drain-to-Source Voltage (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss
gs
gd ,
ds
rss
gd
oss
ds
gd
Ciss
Coss
Crss
0
10
20
30
40
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
9.0A
V
= 20V
DS
V
= 50V
DS
V
= 80V
DS
0.1
1
10
100
0.2
0.4
0.6
0.8
1.0
1.2
1.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
°
T = 175 C
J
°
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
background image
IRF530N
www.irf.com
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D =
t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25
50
75
100
125
150
175
0
4
8
12
16
20
T , Case Temperature
( C)
I , Drain Current (A)
°
C
D
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width
1
µs
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
V
GS
+
-
V
DD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms