ChipFind - Datasheet

Part Number EP7311

Download:  PDF   ZIP

Document Outline

©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
Nov '03
DS506PP1
http://www.cirrus.com
High-Performance,
Low-Power System on Chip with
SDRAM and Enhanced Digital
Audio Interface
EP7311 Data Sheet
OVERVIEW
BLOCK DIAGRAM
FEATURES
(cont.)
(cont.)
I ARM720T Processor
-- ARM7TDMI CPU
-- 8 KB of four-way set-associative cache
-- MMU with 64-entry TLB
-- Thumb code support enabled
I Ultra low power
-- 90 mW at 74 MHz typical
-- 30 mW at 18 MHz typical
-- 10 mW in the Idle State
-- <1 mW in the Standby State
I 48 KB of on-chip SRAM
I MaverickKeyTM IDs
-- 32-bit unique ID can be used for SDMI compliance
-- 128-bit random ID
I Dynamically programmable clock speeds of
18, 36, 49, and 74 MHz
LCD
Controller
Boot
ROM
MaverickKey
T M
ARM7TDMI CPU Core
MMU
8 KB
Cache
Write
Buffer
Internal Data Bus
EPB Bus
Memory Controller
SDRAM I/F
SRAM I/F
On-chip SRAM
48 KB
ICE-JTAG
Clocks &
Timers
Keypad&
Touch
Screen I/F
Interrupts,
PWM & GPIO
Bus
Bridge
(2) UARTs
w/ IrDA
Power
Management
Serial
Interface
Multimedia
Codec Port
ARM720T
MEMORY AND STORAGE
US
E
R
INTE
RF
A
C
E
S
E
RI
A
L
P
O
RT
S
The MaverickTM EP7311 is designed for ultra-low-power
applications such as PDAs, smart cellular phones, and
industrial hand held information appliances. The core-
logic functionality of the device is built around an
ARM720T processor with 8 KB of four-way set-
associative unified cache and a write buffer. Incorporated
into the ARM720T is an enhanced memory management
unit (MMU) which allows for support of sophisticated
operating systems like Linux
®
.
2
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
FEATURES
(cont)
I LCD controller
-- Interfaces directly to a single-scan panel
monochrome STN LCD
-- Interfaces to a single-scan panel color STN LCD
with minimal external glue logic
I Full JTAG boundary scan and Embedded ICE
®
support
I Integrated Peripheral Interfaces
-- 32-bit SDRAM Interface up to 2 external banks
-- 8/32/16-bit SRAM/FLASH/ROM Interface
-- Multimedia Codec Port
-- Two Synchronous Serial Interfaces (SSI1, SSI2)
-- CODEC Sound Interface
-- 8
×8 Keypad Scanner
-- 27 General Purpose Input/Output pins
-- Dedicated LED flasher pin from the RTC
I Internal Peripherals
-- Two 16550 compatible UARTs
-- IrDA Interface
-- Two PWM Interfaces
-- Real-time Clock
-- Two general purpose 16-bit timers
-- Interrupt Controller
-- Boot ROM
I Package
-- 208-Pin LQFP
-- 256-Ball PBGA
-- 204-Ball TFBGA
I The fully static EP7311 is optimized for low power
dissipation and is fabricated on a 0.25 micron CMOS
process
I Development Kits
-- EDB7312: Development Kit with color STN LCD
on board.
-- EDB7312-LW: EDB7312 with Lynuxworks'
BlueCat Linux Tools and software for Windows
host (free 30 day BlueCat support from
Lynuxworks).
-- EDB7312-LL: EDB7312 with Lynuxworks' BlueCat
Linux Tools and software for Linux host (free 30
day BlueCat support from Lynuxworks).
Note:
* BlueCat available separately through Lynuxworks
only.
* Use the EDB7312 Development Kit for all the EP73xx
devices.
OVERVIEW
(cont.)
The EP7311 is designed for low-power operation. Its core
operates at only 2.5 V, while its I/O has an operation
range of 2.5 V­3.3 V. The device has three basic power
states: operating, idle and standby.
One of its notable features is MaverickKey unique IDs.
These are factory programmed IDs in response to the
growing concern over secure web content and commerce.
With Internet security playing an important role in the
delivery of digital media such as books or music,
traditional software methods are quickly becoming
unreliable. The MaverickKey unique IDs consist of two
registers, one 32-bit series register and one random 128-
bit register that may be used by an OEM for an
authentication mechanism.
Simply by adding desired memory and peripherals to the
highly integrated EP7311 completes a low-power system
solution. All necessary interface logic is integrated on-
chip.
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
3
EP7311
High-Performance, Low-Power System on Chip
Processor Core - ARM720T
The
EP7311
incorporates
an
ARM
32-bit
RISC
microcontroller that controls a wide range of on-chip
peripherals. The processor utilizes a three-stage pipeline
consisting of fetch, decode and execute stages. Key
features include:
· ARM (32-bit) and Thumb (16-bit compressed)
instruction sets
· Enhanced MMU for Microsoft Windows CE and other
operating systems
· 8 KB of 4-way set-associative cache.
· Translation Look Aside Buffers with 64 Translated
Entries
Power Management
The EP7311 is designed for ultra-low-power operation.
Its core operates at only 2.5 V, while its I/O has an
operation range of 2.5 V­3.3 V allowing the device to
achieve a performance level equivalent to 60 MIPS. The
device has three basic power states:
· Operating -- This state is the full performance
state. All the clocks and peripheral logic are
enabled.
· Idle -- This state is the same as the Operating
State, except the CPU clock is halted while
waiting for an event such as a key press.
· Standby -- This state is equivalent to the
computer being switched off (no display), and
the main oscillator shut down. An event such as
a key press can wake-up the processor.
MaverickKey
TM
Unique ID
MaverickKey unique hardware programmed IDs are a
solution to the growing concern over secure web content
and commerce. With Internet security playing an
important role in the delivery of digital media such as
books or music, traditional software methods are quickly
becoming unreliable. The MaverickKey unique IDs
provide OEMs with a method of utilizing specific
hardware IDs such as those assigned for SDMI (Secure
Digital Music Initiative) or any other authentication
mechanism.
Both a specific 32-bit ID as well as a 128-bit random ID is
programmed into the EP7311 through the use of laser
probing technology. These IDs can then be used to match
secure copyrighted content with the ID of the target
device the EP7311 is powering, and then deliver the
copyrighted information over a secure connection. In
addition, secure transactions can benefit by also
matching device IDs to server IDs. MaverickKey IDs
provide a level of hardware security required for today's
Internet appliances.
Memory Interfaces
There are two main external memory interfaces. The first
one is the ROM/SRAM/FLASH-style interface that has
programmable wait-state timings and includes burst-
mode capability, with six chip selects decoding six
256 MB sections of addressable space. For maximum
flexibility, each bank can be specified to be 8-, 16-, or 32-
bits wide. This allows the use of 8-bit-wide boot ROM
options to minimize overall system cost. The on-chip
boot ROM can be used in product manufacturing to
serially download system code into system FLASH
memory.
To
further
minimize
system
memory
requirements and cost, the ARM Thumb instruction set is
supported, providing for the use of high-speed 32-bit
operations in 16-bit op-codes and yielding industry-
leading code density.
Note:
Pins are multiplexed. See
Table S on page 8
for more
information.
Pin Mnemonic
I/O
Pin Description
BATOK
I
Battery ok input
nEXTPWR
I
External power supply sense
input
nPWRFL
I
Power fail sense input
nBATCHG
I
Battery changed sense input
Table A. Power Management Pin Assignments
Pin Mnemonic
I/O
Pin Description
nCS[5:0]
O
Chip select out
A[27:0]
O
Address output
D[31:0]
I/O
Data I/O
nMOE/nSDCAS
(Note)
O
ROM expansion OP enable
nMWE/nSDWE
(Note)
O
ROM expansion write enable
HALFWORD
O
Halfword access select
output
WORD
O
Word access select output
WRITE/nSDRAS
(Note)
O
Transfer direction
Table B. Static Memory Interface Pin Assignments
4
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
The second is the programmable 16- or 32-bit-wide
SDRAM interface that allows direct connection of up to
two banks of SDRAM, totaling 512 Mb. To assure the
lowest
possible
power
consumption,
the
EP7311
supports self-refresh SDRAMs, which are placed in a
low-power state by the device when it enters the low-
power Standby State.
Note:
1. Pins A[27:13] map to DRA[0:14] respectively.
(i.e. A[27}/DRA[0}, A[26}/DRA[1], etc.) This is to
balance the load for large memory systems.
2. Pins are multiplexed. See
Table S on page 8
for
more information.
Digital Audio Capability
The EP7311 uses its powerful 32-bit RISC processing
engine to implement audio decompression algorithms in
software. The nature of the on-board RISC processor, and
the availability of efficient C-compilers and other
software development tools, ensures that a wide range of
audio decompression algorithms can easily be ported to
and run on the EP7311
Universal Asynchronous
Receiver/Transmitters (UARTs)
The EP7311 includes two 16550-type UARTs for RS-232
serial communications, both of which have two 16-byte
FIFOs for receiving and transmitting data. The UARTs
support bit rates up to 115.2 kbps. An IrDA SIR protocol
encoder/decoder can be optionally switched into the
RX/TX signals to/from UART 1 to enable these signals
to drive an infrared communication interface directly.
Multimedia Codec Port (MCP)
The Multimedia Codec Port provides access to an audio
codec, a telecom codec, a touchscreen interface, four
general purpose analog-to-digital converter inputs, and
ten programmable digital I/O lines.
Note:
See
Table R on page 8
for information on pin
multiplexes.
Pin Mnemonic
I/O
Pin Description
SDCLK
O
SDRAM clock output
SDCKE
O
SDRAM clock enable output
nSDCS[1:0]
O
SDRAM chip select out
WRITE/nSDRAS
(Note 2)
O
SDRAM RAS signal output
nMOE/nSDCAS
(Note 2)
O
SDRAM CAS control signal
nMWE/nSDWE
(Note 2)
O
SDRAM write enable control
signal
A[27:15]/DRA[0:12]
(Note 1)
O
SDRAM address
A[14:13]/DRA[12:14]
O
SDRAM internal bank select
PD[7:6]/SDQM[1:0]
(Note 2)
I/O
SDRAM byte lane mask
SDQM[3:2]
O
SDRAM byte lane mask
D[31:0]
I/O
Data I/O
Table C. SDRAM Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
TXD[1]
O
UART 1 transmit
RXD[1]
I
UART 1 receive
CTS
I
UART 1 clear to send
DCD
I
UART 1 data carrier detect
DSR
I
UART 1 data set ready
TXD[2]
O
UART 2 transmit
RXD[2]
I
UART 2 receive
LEDDRV
O
Infrared LED drive output
PHDIN
I
Photo diode input
Table D. Universal Asynchronous Receiver/Transmitters Pin
Assignments
Pin Mnemonic
I/O
Pin Description
SIBCLK
O
Serial bit clock
SIBDOUT
O
Serial data out
SIBDIN
I
Serial data in
SIBSYNC
O
Sample clock
Table E. MCP Interface Pin Assignments
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
5
EP7311
High-Performance, Low-Power System on Chip
CODEC Interface
The EP7311 includes an interface to telephony-type
CODECs for easy integration into voice-over-IP and
other voice communications systems. The CODEC
interface is multiplexed to the same pins as the MCP and
SSI2.
Note:
See
Table R on page 8
for information on pin
multiplexes.
SSI2 Interface
An additional SPI/Microwire1-compatible interface is
available
for
both
master
and
slave
mode
communications. The SSI2 unit shares the same pins as
the MCP and CODEC interfaces through a multiplexer.
· Synchronous clock speeds of up to 512 kHz
· Separate 16 entry TX and RX half-word wide FIFOs
· Half empty/full interrupts for FIFOs
· Separate RX and TX frame sync signals for
asymmetric traffic
Note:
See
Table R on page 8
for information on pin
multiplexes.
Synchronous Serial Interface
· ADC (SSI) Interface: Master mode only; SPI and
Microwire1-compatible (128 kbps operation)
· Selectable serial clock polarity
LCD Controller
A DMA address generator is provided that fetches video
display data for the LCD controller from memory. The
display frame buffer start address is programmable,
allowing the LCD frame buffer to be in SDRAM, internal
SRAM or external SRAM.
· Interfaces directly to a single-scan panel monochrome
STN LCD
· Interfaces to a single-scan panel color STN LCD with
minimal external glue logic
· Panel width size is programmable from 32 to 1024
pixels in 16-pixel increments
· Video frame buffer size programmable up to
128 KB
· Bits per pixel of 1, 2, or 4 bits
Pin Mnemonic
I/O
Pin Description
PCMCLK
O
Serial bit clock
PCMOUT
O
Serial data out
PCMIN
I
Serial data in
PCMSYNC
O
Frame sync
Table F. CODEC Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
SSICLK
I/O
Serial bit clock
SSITXDA
O
Serial data out
SSIRXDA
I
Serial data in
SSITXFR
I/O
Transmit frame sync
SSIRXFR
I/O
Receive frame sync
Table G. SSI2 Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
ADCLK
O
SSI1 ADC serial clock
ADCIN
I
SSI1 ADC serial input
ADCOUT
O
SSI1 ADC serial output
nADCCS
O
SSI1 ADC chip select
SMPCLK
O
SSI1 ADC sample clock
Table H. Serial Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
CL1
O
LCD line clock
CL2
O
LCD pixel clock out
DD[3:0]
O
LCD serial display data bus
FRM
O
LCD frame synchronization pulse
M
O
LCD AC bias drive
Table I. LCD Interface Pin Assignments
6
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
64-Keypad Interface
Matrix keyboards and keypads can be easily read by the
EP7311. A dedicated 8-bit column driver output
generates strobes for each keyboard column signal. The
pins of Port A, when configured as inputs, can be
selectively OR'ed together to provide a keyboard
interrupt that is capable of waking the system from a
STANDBY or IDLE state.
· Column outputs can be individually set high with the
remaining bits left at high-impedance
· Column outputs can be driven all-low, all-high, or all-
high-impedance
· Keyboard interrupt driven by OR'ing together all Port
A bits
· Keyboard interrupt can be used to wake up the
system
· 8
×8 keyboard matrix usable with no external logic,
extra keys can be added with minimal glue logic
Interrupt Controller
When unexpected events arise during the execution of a
program (i.e., interrupt or memory fault) an exception is
usually generated. When these exceptions occur at the
same time, a fixed priority system determines the order
in which they are handled. The EP7311 interrupt
controller has two interrupt types: interrupt request
(IRQ) and fast interrupt request (FIQ). The interrupt
controller has the ability to control interrupts from 22
different FIQ and IRQ sources.
· Supports 22 interrupts from a variety of sources (such
as UARTs, SSI1, and key matrix.)
· Routes interrupt sources to the ARM720T's IRQ or
FIQ (Fast IRQ) inputs
· Five dedicated off-chip interrupt lines operate as level
sensitive interrupts
.
Note:
Pins are multiplexed. See
Table S on page 8
for more
information.
Real-Time Clock
The EP7311 contains a 32-bit Real Time Clock (RTC) that
can be written to and read from in the same manner as
the timer counters. It also contains a 32-bit output match
register which can be programmed to generate an
interrupt.
· Driven by an external 32.768 kHz crystal oscillator
PLL and Clocking
· Processor and Peripheral Clocks operate from a single
3.6864 MHz crystal or external 13 MHz clock
· Programmable clock speeds allow the peripheral bus
to run at 18 MHz when the processor is set to 18 MHz
and at 36 MHz when the processor is set to 36, 49 or
74 MHz
Pin Mnemonic
I/O
Pin Description
COL[7:0]
O
Keyboard scanner column drive
Table J. Keypad Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
nEINT[2:1]
I
External interrupt
EINT[3]
I
External interrupt
nEXTFIQ
I
External Fast Interrupt input
nMEDCHG/nBROM
(Note)
I
Media change interrupt input
Table K. Interrupt Controller Pin Assignments
Pin Mnemonic
Pin Description
RTCIN
Real-Time Clock Oscillator Input
RTCOUT
Real-Time Clock Oscillator Output
VDDRTC
Real-Time Clock Oscillator Power
VSSRTC
Real-Time Clock Oscillator Ground
Table L. Real-Time Clock Pin Assignments
Pin Mnemonic
Pin Description
MOSCIN
Main Oscillator Input
MOSCOUT
Main Oscillator Output
VDDOSC
Main Oscillator Power
VSSOSC
Main Oscillator Ground
Table M. PLL and Clocking Pin Assignments
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
7
EP7311
High-Performance, Low-Power System on Chip
DC-to-DC converter interface (PWM)
· Provides two 96 kHz clock outputs with
programmable duty ratio (from 1-in-16 to 15-in-16)
that can be used to drive a positive or negative DC to
DC converter
Timers
· Internal (RTC) timer
· Two internal 16-bit programmable hardware count-
down timers
General Purpose Input/Output (GPIO)
· Three 8-bit and one 3-bit GPIO ports
· Supports scanning keyboard matrix
Note:
Pins are multiplexed. See
Table S on page 8
for more
information.
Hardware debug Interface
· Full JTAG boundary scan and Embedded ICE
®
support
LED Flasher
A dedicated LED flasher module can be used to generate
a low frequency signal on Port D pin 0 for the purpose of
blinking an LED without CPU intervention. The LED
flasher feature is ideal as a visual annunciator in battery
powered applications, such as a voice mail indicator on a
portable phone or an appointment reminder on a PDA.
· Software adjustable flash period and duty cycle
· Operates from 32 kHz RTC clock
· Will continue to flash in IDLE and STANDBY states
· 4 mA drive current
Note:
Pins are multiplexed. See
Table S on page 8
for more
information.
Internal Boot ROM
The internal 128 byte Boot ROM facilitates download of
saved code to the on-board SRAM/FLASH.
Packaging
The EP7311 is available in a 208-pin LQFP package, 256-
ball PBGA package or a 204-ball TFBGA package.
Pin Mnemonic
I/O
Pin Description
DRIVE[1:0]
I/O
PWM drive output
FB[1:0]
I
PWM feedback input
Table N. DC-to-DC Converter Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
PA[7:0]
I/O
GPIO port A
PB[7:0]
I/O
GPIO port B
PD[0]/LEDFLSH
(Note)
I/O
GPIO port D
PD[5:1]
I/O
GPIO port D
PD[7:6]/SDQM[1:0]
(Note)
I/O
GPIO port D
PE[1:0]/BOOTSEL[1:0] (Note)
I/O
GPIO port E
PE[2]/CLKSEL
(Note)
I/O
GPIO port E
Table O. General Purpose Input/Output Pin Assignments
Pin Mnemonic
I/O
Pin Description
TCLK
I
JTAG clock
TDI
I
JTAG data input
TDO
O
JTAG data output
nTRST
I
JTAG async reset input
TMS
I
JTAG mode select
Table P. Hardware Debug Interface Pin Assignments
Pin Mnemonic
I/O
Pin Description
PD[0]/LEDFLSH
(Note)
O
LED flasher driver
Table Q. LED Flasher Pin Assignments
8
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
Pin Multiplexing
The following table shows the pin multiplexing of the
MCP, SSI2 and the CODEC. The selection between SSI2
and the CODEC is controlled by the state of the SERSEL
bit in SYSCON2. The choice between the SSI2, CODEC,
and the MCP is controlled by the MCPSEL bit in
SYSCON3 (see the EP73xx User's Manual for more
information).
The following table shows the pins that have been
multiplexed in the EP7311.
Pin
Mnemonic
I/O
MCP
SSI2
CODEC
SSICLK
I/O
SIBCLK
SSICLK PCMCLK
SSITXDA
O
SIBDOUT
SSITXDA
PCMOUT
SSIRXDA
I
SIBDIN
SSIRXDA
PCMIN
SSITXFR
I/O
SIBSYNC
SSITXFR
PCMSYNC
SSIRXFR
I
p/u
SSIRXFR
p/u
BUZ
O
Table R. MCP/SSI2/CODEC Pin Multiplexing
Signal
Block
Signal
Block
nMOE
Static Memory
nSDCAS
SDRAM
nMWE
Static Memory
nSDWE
SDRAM
WRITE
Static Memory
nSDRAS
SDRAM
A[27:15]
Static Memory
DRA[0:12]
SDRAM
A[14:13]
Static Memory
DRA[13:14]
SDRAM
PD[7:6]
GPIO
SDQM[1:0]
SDRAM
RUN
System
Configuration
CLKEN
System
Configuration
nMEDCHG
Interrupt
Controller
nBROM
Boot ROM
select
PD[0]
GPIO
LEDFLSH
LED Flasher
PE[1:0]
GPIO
BOOTSEL[1:0]
System
Configuration
PE[2]
GPIO
CLKSEL
System
Configuration
Table S. Pin Multiplexing
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
9
EP7311
High-Performance, Low-Power System on Chip
System Design
As shown in system block diagram, simply adding
desired memory and peripherals to the highly integrated
EP7311 completes a low-power system solution. All
necessary interface logic is integrated on-chip.
Figure 1. A Maximum EP7311 Based System
Note:
A system can only use one of the following peripheral
interfaces at any given time: SSI2,CODEC or MCP.
LCD
KEYBOARD
BATTERY
DC-TO-DC
CONVERTERS
ADC
DIGITIZER
IR LED AND
PHOTODIODE
2
× RS-232
TRANSCEIVERS
ADDITIONAL I/O
PC CARD
CONTROLLER
PC CARD
SOCKET
nCS[4]
PB0
EXPCLK
DD[0-3]
CL1
CL2
FRM
M
D[0-31]
A[0-27]
COL[0-7]
PA[0-7]
DC
INPUT
nMOE
WRITE
PB[0-7]
PD[0-7]
PE[0-2]
nPOR
nPWRFL
BATOK
nEXTPWR
nBATCHG
RUN
WAKEUP
nCS[0]
nCS[1]
DRIVE[0-1]
FB[0-1]
EP731
1
ADCCLK
nADCCS
ADCOUT
ADCIN
SMPCLK
LEDDRV
PHDIN
RXD1/2
TXD1/2
DSR
CTS
DCD
CS[n]
WORD
nCS[2]
nCS[3]
×16
FLASH
×16
FLASH
×16
FLASH
EXTERNAL MEMORY-
MAPPED EXPANSION
BUFFERS
BUFFERS
AND
LATCHES
×16
FLASH
POWER
SUPPLY UNIT
AND
COMPARATORS
CRYSTAL
CODEC/SSI2/
MCP
SSICLK
SSITXFR
SSITXDA
SSIRXDA
SSIRXFR
RTCIN
LEDFLSH
CRYSTAL
MOSCIN
×16
SDRAM
×16
SDRAM
×16
SDRAM
×16
SDRAM
SDCS[1]
SDQM[0-3]
SDCS[0]
SDQM[0-3]
SDRAS/
SDCAS
10
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings
Recommended Operating Conditions
DC Characteristics
All characteristics are specified at V
DDCORE
= 2.5 V, V
DDIO
= 3.3 V and V
SS
= 0 V over an operating temperature of 0°C
to +70°C for all frequencies of operation. The current consumption figures have test conditions specified per
parameter."
DC Core, PLL, and RTC Supply Voltage
2.9 V
DC I/O Supply Voltage (Pad Ring)
3.6 V
DC Pad Input Current
±10 mA/pin; ±100 mA cumulative
Storage Temperature, No Power
­40
°C to +125°C
DC core, PLL, and RTC Supply Voltage
2.5 V
± 0.2 V
DC I/O Supply Voltage (Pad Ring)
2.3 V - 3.5 V
DC Input / Output Voltage
O­I/O supply voltage
Operating Temperature
Extended -20
°C to +70°C; Commercial 0°C to +70°C;
Industrial -40
°C to +85°C
Symbol
Parameter
Min
Typ
Max
Unit
Conditions
VIH
CMOS input high voltage
0.65
× V
DDIO
-
V
DDIO
+ 0.3
V
V
DDIO
= 2.5 V
VIL
CMOS input low voltage
V
SS
- 0.3
-
0.25
× V
DDIO
V
V
DDIO
= 2.5 V
VT+
Schmitt trigger positive going
threshold
-
-
2.1
V
VT-
Schmitt trigger negative going
threshold
0.8
-
-
V
Vhst
Schmitt trigger hysteresis
0.1
-
0.4
V
VIL to VIH
VOH
CMOS output high voltage
a
Output drive 1
a
Output drive 2
a
V
DD
­ 0.2
2.5
2.5
-
-
-
-
-
-
V
V
V
IOH = 0.1 mA
IOH = 4 mA
IOH = 12 mA
VOL
CMOS output low voltage
a
Output drive 1
a
Output drive 2
a
-
-
-
-
-
-
0.3
0.5
0.5
V
V
V
IOL = ­0.1 mA
IOL = ­4 mA
IOL = ­12 mA
IIN
Input leakage current
-
-
1.0
µA
VIN = V
DD
or GND
IOZ
Bidirectional 3-state leakage
current
b c
25
-
100
µA
VOUT = V
DD
or GND
CIN
Input capacitance
8
-
10.0
pF
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
11
EP7311
High-Performance, Low-Power System on Chip
Note:
1) Total power consumption = IDD
CORE
x 2.5 V + IDD
IO
x 3.3 V
2) A typical design will provide 3.3 V to the I/O supply (i.e., V
DDIO
), and 2.5 V to the remaining logic. This is to allow the I/O to be
compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).
2) Pull-up current = 50 µA typical at V
DD
= 3.3 V.
COUT
Output capacitance
8
-
10.0
pF
CI/O
Transceiver capacitance
8
-
10.0
pF
IDD
STANDBY
@ 25 C
Standby current consumption
1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
-
-
77
41
-
-
µA
Only nPOR, nPWRFAIL,
nURESET, PE0, PE1, and RTS
are driven, while all other float,
VIH = V
DD
± 0.1 V,
VIL = GND ± 0.1 V
IDD
STANDBY
@ 70 C
Standby current consumption
1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
-
-
-
-
570
111
µA
Only nPOR, nPWRFAIL,
nURESET, PE0, PE1, and RTS
are driven, while all other float,
VIH = V
DD
± 0.1 V,
VIL = GND ± 0.1 V
IDD
STANDBY
@ 85 C
Standby current consumption
1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
-
-
-
-
1693
163
µA
Only nPOR, nPWRFAIL,
nURESET, PE0, PE1, and RTS
are driven, while all other float,
VIH = V
DD
± 0.1 V,
VIL = GND ± 0.1 V
IDD
idle
at 74 MHz
Idle current consumption
1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
-
-
6
10
-
-
mA
Both oscillators running, CPU
static, Cache enabled, LCD
disabled, VIH = V
DD
± 0.1 V, VIL
= GND ± 0.1 V
VDD
STANDBY
Standby supply voltage
2.0
-
-
V
Minimum standby voltage for
state retention, internal SRAM
cache, and RTC operation only
a.
Refer to the strength column in the pin assignment tables for all package types.
b.
Assumes buffer has no pull-up or pull-down resistors.
c.
The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.
Symbol
Parameter
Min
Typ
Max
Unit
Conditions
12
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
Timings
Timing Diagram Conventions
This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any
variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless
specifically stated.
Timing Conditions
Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are
specified at V
DDIO
= 3.1 - 3.5 V and V
SS
= 0 V over an operating temperature of -40
°C to +85°C. Pin loadings is 50 pF.
The timing values are referenced to 1/2 V
DD
.
C l o c k
H i g h t o L o w
H i g h / L o w t o H i g h
B u s C h a n g e
B u s V a l i d
U n d e f i n e d / I n v a l i d
V a l i d B u s t o T r i s t a t e
B u s / S i g n a l O m i s s i o n
Figure 2. Legend for Timing Diagrams
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
13
EP7311
High-Performance, Low-Power System on Chip
SDRAM Interface
Figure 3
through
Figure 6
define the timings associated with all phases of the SDRAM. The following table contains the
values for the timings of each of the SDRAM modes.
Parameter
Symbol
Min
Typ
Max
Unit
SDCLK rising edge to SDCS assert delay time
t
CSa
0
2
4
ns
SDCLK rising edge to SDCS deassert delay time
t
CSd
- 3
2
10
ns
SDCLK rising edge to SDRAS assert delay time
t
RAa
1
3
7
ns
SDCLK rising edge to SDRAS deassert delay time
t
RAd
- 3
1
10
ns
SDCLK rising edge to SDRAS invalid delay time
t
RAnv
2
4
7
ns
SDCLK rising edge to SDCAS assert delay time
t
CAa
- 2
2
5
ns
SDCLK rising edge to SDCAS deassert delay time
t
CAd
- 5
0
3
ns
SDCLK rising edge to ADDR transition time
t
ADv
- 3
1
5
ns
SDCLK rising edge to ADDR invalid delay time
t
ADx
- 2
2
5
ns
SDCLK rising edge to SDMWE assert delay time
t
MWa
- 2
1
5
ns
SDCLK rising edge to SDMWE deassert delay time
t
MWd
- 4
0
4
ns
DATA transition to SDCLK rising edge time
t
DAs
-
-
2
ns
SDCLK rising edge to DATA transition hold time
t
DAh
-
-
1
ns
SDCLK rising edge to DATA transition delay time
t
DAd
0
-
15
ns
14
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
SDRAM Load Mode Register Cycle
Note:
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
SDCLK
SDCS
SDRAS
SDCAS
ADDR
DATA
SDQM
SDMWE
t
CSa
t
RAa
t
CAa
t
MWa
t
ADv
t
ADx
t
RAd
t
CSd
t
CAd
t
MWd
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
15
EP7311
High-Performance, Low-Power System on Chip
SDRAM Burst Read Cycle
Note:
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal.
ADRAS
ADCAS
SDCLK
SDCS
SDRAS
SDCAS
SDQM
[0:3]
ADDR
DATA
SDMWE
D1
D4
D3
D2
t
ADv
t
ADv
t
CSd
t
CSa
t
CSa
t
CAa
t
RAd
t
CSd
t
CAd
t
RAa
t
DAh
t
DAs
t
DAh
t
DAs
t
DAh
t
DAs
t
DAh
t
DAs
t
RAnv
Figure 4. SDRAM Burst Read Cycle Timing Measurement
16
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
SDRAM Burst Write Cycle
Note:
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
SDCLK
SDCS
SDRAS
SDCAS
SDQM
ADDR
DATA
SDMWE
0
D1
ADRAS
ADCAS
D4
D3
D2
t
CSa
t
RAa
t
CAa
t
CSa
t
CSd
t
RAd
t
CSd
t
CAd
t
ADv
t
DAd
t
ADv
t
DAd
t
DAd
t
DAd
t
MWa
t
MWd
Figure 5. SDRAM Burst Write Cycle Timing Measurement
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
17
EP7311
High-Performance, Low-Power System on Chip
SDRAM Refresh Cycle
Note:
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
SDCLK
SDCS
SDRAS
SDCAS
SDQM
[3:0]
SDMWE
SDATA
ADDR
t
CSa
t
RAa
t
CSd
t
RAd
t
CAa
t
CAd
Figure 6. SDRAM Refresh Cycle Timing Measurement
18
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
Static Memory
Figure 7
through
Figure 10
define the timings associated with all phases of the Static Memory. The following table
contains the values for the timings of each of the Static Memory modes.
Parameter
Symbol
Min
Typ
Max
Unit
EXPCLK rising edge to nCS assert delay time
t
CSd
2
8
20
ns
EXPCLK falling edge to nCS deassert hold time
t
CSh
2
7
20
ns
EXPCLK rising edge to A assert delay time
t
Ad
4
9
16
ns
EXPCLK falling edge to A deassert hold time
t
Ah
3
10
19
ns
EXPCLK rising edge to nMWE assert delay time
t
MWd
3
6
10
ns
EXPCLK rising edge to nMWE deassert hold time
t
MWh
3
6
10
ns
EXPCLK falling edge to nMOE assert delay time
t
MOEd
3
7
10
ns
EXPCLK falling edge to nMOE deassert hold time
t
MOEh
2
7
10
ns
EXPCLK falling edge to HALFWORD deassert delay time
t
HWd
2
8
20
ns
EXPCLK falling edge to WORD assert delay time
t
WDd
2
8
16
ns
EXPCLK rising edge to data valid delay time
t
Dv
8
13
21
ns
EXPCLK falling edge to data invalid delay time
t
Dnv
6
15
30
ns
Data setup to EXPCLK falling edge time
t
Ds
-
-
1
ns
EXPCLK falling edge to data hold time
t
Dh
-
-
3
ns
EXPCLK rising edge to WRITE assert delay time
t
WRd
5
11
23
ns
EXPREADY setup to EXPCLK falling edge time
t
EXs
-
-
0
ns
EXPCLK falling edge to EXPREADY hold time
t
EXh
-
-
0
ns
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
19
EP7311
High-Performance, Low-Power System on Chip
Static Memory Single Read Cycle
Note:
1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Address, Halfword, Word, and Write hold state until next cycle.
EXPCLK
nCS
A
nMWE
HALF-
WORD
WORD
D
WRITE
nMOE
t
CSd
t
Ad
t
CSh
t
MOEh
t
Dh
t
Ds
t
HWd
t
WDd
t
WRd
t
MOEd
EXPRDY
t
EXh
t
EXs
Figure 7. Static Memory Single Read Cycle Timing Measurement
20
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
Static Memory Single Write Cycle
Note:
1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
3. Address, Data, Halfword, Word, and Write hold state until next cycle.
EXPCLK
nCS
A
nMWE
HALF-
WORD
WORD
D
WRITE
t
HWd
t
WDd
t
CSd
t
Ad
t
MWd
t
Dv
t
MWh
t
CSh
nMOE
EXPRDY
t
EXh
t
EXs
Figure 8. Static Memory Single Write Cycle Timing Measurement
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
21
EP7311
High-Performance, Low-Power System on Chip
Static Memory Burst Read Cycle
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to
determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion
cycles. This improves performance so the SQAEN bit should always be set where possible.
4. Address, Halfword, Word, and Write hold state until next cycle.
EXPCLK
nCS
A
nMOE
HALF
WORD
WORD
D
nMWE
EXPRDY
WRITE
t
CSd
t
Ad
t
Ah
t
Ah
t
Ah
t
CSh
t
MOEh
t
MOEd
t
EXs
t
EXh
t
Ds
t
Dh
t
Ds
t
Ds
t
Ds
t
Dh
t
Dh
t
Dh
t
WRd
t
HWd
t
WDd
Figure 9. Static Memory Burst Read Cycle Timing Measurement
22
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
Static Memory Burst Write Cycle
Note:
1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
4. Address, Data, Halfword, Word, and Write hold state until next cycle.
EXPCLK
nCS
A
nMOE
HALF
WORD
WORD
D
nMWE
EXPRDY
WRITE
t
CSd
t
Ad
t
MWd
t
MWh
t
MWd
t
MWd
t
MWd
t
MWh
t
MWh
t
MWh
t
Ah
t
Ah
t
Ah
t
EXs
t
EXh
t
CSh
t
Dv
t
Dv
t
Dv
t
Dnv
t
Dnv
t
Dnv
t
Dv
t
HWd
t
WDd
Figure 10. Static Memory Burst Write Cycle Timing Measurement
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
23
EP7311
High-Performance, Low-Power System on Chip
SSI1 Interface
Parameter
Symbol
Min
Max
Unit
ADCCLK falling edge to nADCCSS deassert delay time
t
Cd
9
10
ms
ADCIN data setup to ADCCLK rising edge time
t
INs
-
15
ns
ADCIN data hold from ADCCLK rising edge time
t
INh
-
14
ns
ADCCLK falling edge to data valid delay time
t
Ovd
-
7
13
ns
ADCCLK falling edge to data invalid delay time
t
Od
-
2
3
ns
ADC
CLK
nADC
CSS
ADCIN
ADC
OUT
t
INs
t
INh
t
Cd
t
Od
t
Ovd
Figure 11. SSI1 Interface Timing Measurement
24
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
SSI2 Interface
Parameter
Symbol
Min
Max
Unit
SSICLK period (slave mode)
t
clk_per
185
2050
ns
SSICLK high time
t
clk_high
925
1025
ns
SSICLK low time
t
clk_low
925
1025
ns
SSICLK rise/fall time
t
clkrf
3
18
ns
SSICLK rising edge to RX and/or TX frame sync high time
t
FRd
-
3
ns
SSICLK rising edge to RX and/or TX frame sync low time
t
FRa
-
8
ns
SSIRXFR and/or SSITXFR period
t
FR_per
960
990
ns
SSIRXDA setup to SSICLK falling edge time
t
RXs
3
7
ns
SSIRXDA hold from SSICLK falling edge time
t
RXh
3
7
ns
SSICLK rising edge to SSITXDA data valid delay time
t
TXd
-
2
ns
SSITXDA valid time
t
TXv
960
990
ns
SSI
CLK
SSIRXFR/
SSITXFR
SSI
TXDA
SSI
RXDA
D1
D7
D7
D2
D2
D1
D0
D0
t
clk_per
t
clk_high
t
clk_low
t
FRd
t
FR_per
t
RXs
t
TXd
t
FRa
t
RXh
t
clkrf
t
TXv
Figure 12. SSI2 Interface Timing Measurement
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
25
EP7311
High-Performance, Low-Power System on Chip
LCD Interface
Parameter
Symbol
Min
Max
Unit
CL[2] falling to CL[1] rising delay time
t
CL1d
-
10
25
ns
CL[1] falling to CL[2] rising delay time
t
CL2d
80
3,475
ns
CL[1] falling to FRM transition time
t
FRMd
300
10,425
ns
CL[1] falling to M transition time
t
Md
-
10
20
ns
CL[2] rising to DD (display data) transition time
t
DDd
-
10
20
ns
CL[2]
CL[1]
FRM
M
DD [3:0]
t
CL1d
t
FRMd
t
Md
t
DDd
t
CL2d
Figure 13. LCD Controller Timing Measurement
26
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
JTAG Interface
Parameter
Symbol
Min
Max
Units
TCK clock period
t
clk_per
2
-
ns
TCK clock high time
t
clk_high
1
-
ns
TCK clock low time
t
clk_low
1
-
ns
JTAG port setup time
t
JPs
-
0
ns
JTAG port hold time
t
JPh
-
3
ns
JTAG port clock to output
t
JPco
-
10
ns
JTAG port high impedance to valid output
t
JPzx
-
12
ns
JTAG port valid output to high impedance
t
JPxz
-
19
ns
TDO
TCK
TDI
TMS
t
JPh
t
clk_high
t
clk_low
t
JPzx
t
JPco
t
JPxz
t
clk_per
t
JPs
Figure 14. JTAG Timing Measurement
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
27
EP7311
High-Performance, Low-Power System on Chip
Packages
208-Pin LQFP Package Characteristics
208-Pin LQFP Package Specifications
Note:
1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2) Drawing above does not reflect exact package pin count.
3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.
4) For pin locations, please see
Figure 16
. For pin descriptions see the EP7311 User's Manual.
Figure 15. 208-Pin LQFP Package Outline Drawing
Pin 1 Indicator
29.60 (1.165)
30.40 (1.197)
0.17 (0.007)
0.27 (0.011)
27.80 (1.094)
28.20 (1.110)
0.50
(0.0197)
BSC
29.60 (1.165)
30.40 (1.197)
27.80 (1.094)
28.20 (1.110)
1.35 (0.053)
1.45 (0.057)
0
° MIN
7
° MAX
0.09 (0.004)
0.20 (0.008)
1.40 (0.055)
0.45 (0.018)
0.75 (0.030)
0.05 (0.002)
1.00 (0.039) BSC
Pin 1
Pin 208
1.60 (0.063)
0.15 (0.006)
EP7311
208-Pin LQFP
28
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
208-Pin LQFP Pin Diagram
Note:
1. N/C should not be grounded but left as no connects.
2. Pin differences between the EP7211 and the EP7311 are bolded.
160
159
158
157
53
54
55
56
57
58
59
60
61
62
63
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
106
107
108
109
11
0
11
2
11
3
11
4
11
5
11
6
11
7
11
8
11
9
120
121
64
65
67
68
69
70
71
72
73
74
75
66
98
99
100
101
102
103
104
122
124
125
126
127
128
129
130
105
131
132
133
134
156
155
154
153
152
151
150
149
148
147
146
145
144
143
140
139
138
137
136
141
142
135
161
162
163
164
165
166
167
168
169
170
171
172
173
174
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
201
202
203
204
205
206
207
208
200
175
176
177
178
179
123
11
1
EP7311
208-Pin LQFP
(Top View)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
51
50
52
1
nE
X
T
P
W
R
BA
T
O
K
nP
O
R
VSSOSC
VDDOSC
MOSCIN
MOSCOUT
n
URE
S
E
T
WAKEUP
A[6]
D[6]
A[5]
D[5]
VDDIO
VSSIO
A[4]
D[4]
A[3]
D[3]
nPWRFL
A[2]
D[2]
A[1]
A[0]
D[0]
VDDCORE
VSSIO
VDDIO
CL[2]
CL[1]
FRM
M
DD[2]
DD[1]
DD[0]
nSDCS[1]
SDQM[3]
SDQM[2]
VDDIO
VSSIO
SDCLK
nMWE/nSDWE
nMOE/nSDCAS
nCS[0]
nCS[1]
nCS[2]
nCS[3]
D[7
]
A[
7
]
D[8
]
A[
8
]
D[9
]
D[1
0
]
A
[
10]
V
SSI
O
VD
D
I
O
A
[
11]
D[1
2
]
A
[
12]
D[1
3
]
A
[
13]
\
D
R
A
[
14]
D[1
4
]
DD[3]
D[1
7
]
D[1
5
]
A
[
17]
/DRA
[1
0
]
nT
R
S
T
V
SSI
O
VD
D
I
O
D[1
8
]
A[
1
8
/DRA
[9
]
D[1
9
]
A
[
19]
/DRA
[8
]
D[2
0
]
V
SSI
O
A
[
21]
/DRA
[6
]
D[2
2
]
D[2
3
]
A
[
23]
/DRA
[4
]
D[2
4
]
V
SSI
O
VD
D
I
O
A
[
24]
/DRA
[3
]
HA
L
F
W
O
RD
A
[
14]
/
D
R
A
[
13]
n
B
A
T
CHG
A[25]/DRA[2]
D[25]
D[27]
A[27]/DRA[0]
VSSIO
D[28]
D[29]
D[30]
D[31]
BUZ
COL[0]
COL[1]
TCLK
VDDIO
COL[2]
COL[3]
COL[4]
COL[5]
COL[6]
COL[7]
FB[0]
VSSIO
FB[1]
ADCOUT
ADCCLK
DRIVE[0]
VDDIO
PD[2]
VSSIO
VSSCORE
nADCCS
ADCIN
SSIRXDA
SSIRXFR
SSITXDA
SSITXFR
VSSIO
SSICLK
PD[0]/LEDFLSH
PD[1]
PD[3]
A
[
22]
/DRA
[5
]
PD[4]
VDDIO
PD[5]
PD[6]/SDQM[0]
DRIVE[1]
PD[7]/SDQM[1]
D[26]
A
[
15]
/DRA
[1
2
]
D[1
6
]
A
[
16]
/DRA
[1
1
]
nCS[4]
VDDCORE
A[26]/DRA[1]
D[2
1
]
TMS
A
[
20]
/DRA
[7
]
SMPCLK
D[1
1
]
A[
9
]
D[1]
VSSCORE
nSDCS[0]
SDCKE
V
SSI
O
VSSIO
VSSIO
VSSIO
EXP
C
L
K
WO
R
D
W
R
I
T
E
/
n
S
DRAS
RU
N/
CL
K
E
N
EX
PR
D
Y
PB
[
7
]
PB
[
6
]
PB
[
5
]
PB
[
4
]
PB
[
3
]
PB
[
2
]
PB
[
1
]
V
SSI
O
TD
I
V
DDI
O
TD
O
PE[
2
]
/
C
L
KSE
L
nE
X
T
F
I
Q
PA
[
6
]
PA
[
5
]
PA
[
4
]
PA
[
3
]
PA
[
2
]
PA
[
1
]
PA
[
0
]
L
E
D
DRV
TX
D
[
2
]
P
HDIN
CT
S
RX
D[
2
]
DC
D
DS
R
RT
C
O
UT
RT
CIN
VSS
I
O
PA
[
7
]
V
DDI
O
VSSI
O
nC
S
[
5]
PB
[
0
]
TX
D
[
1
]
RX
D[1
]
n
T
EST
[
1
]
n
T
EST
[
0
]
EI
N
T
[
3
]
nE
I
N
T
[
2]
nE
I
N
T
[
1]
P
E
[1
]B
O
O
T
S
E
L
[1
]
P
E
[0
]B
O
O
T
S
E
L
[0
]
N/C
VSSR
T
C
V
DDRT
C
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram
n
M
E
DCHG
/n
B
R
O
M
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
29
EP7311
High-Performance, Low-Power System on Chip
208-Pin LQFP Numeric Pin Listing
Table T. 208-Pin LQFP Numeric Pin Listing
Pin
No.
Signal
Type
Strength
Reset
State
1
nCS[5]
O
1
Low
2
VDDIO
Pad Pwr
3
VSSIO
Pad Gnd
4
EXPCLK
I/O
1
5
WORD
Out
1
Low
6
WRITE/nSDRAS
Out
1
Low
7
RUN/CLKEN
O 1
Low
8
EXPRDY
I
1
9
TXD[2]
O
1 High
10
RXD[2]
I
11
TDI
I
with p/u*
12
VSSIO
Pad Gnd
13
PB[7]
I/O
1
Input
14
PB[6]
I/O
1
Input
15
PB[5]
I/O
1
Input
16
PB[4]
I/O
1
Input
17
PB[3]
I/O
1
Input
18
PB[2]
I/O
1
Input
19
PB[1]/PRDY2
I/O
1
Input
20
PB[0]/PRDY1
I/O
1
Input
21
VDDIO
Pad Pwr
22
TDO
O
1
Three state
23
PA[7]
I/O
1
Input
24
PA[6]
I/O
1
Input
25
PA[5]
I/O
1
Input
26
PA[4]
I/O
1
Input
27
PA[3]
I/O
1
Input
28
PA[2]
I/O
1
Input
29
PA[1]
I/O
1
Input
30
PA[0]
I/O
1
Input
31
LEDDRV
O
1
Low
32
TXD[1]
O
1
High
33
VSSIO
Pad Gnd
1
High
34
PHDIN
I
35
CTS
I
36
RXD[1]
I
37
DCD
I
38
DSR
I
39
nTEST[1]
I
With p/u*
40
nTEST[0]
I
With p/u*
41
EINT[3]
I
42
nEINT[2]
I
43
nEINT[1]
I
44
nEXTFIQ
I
45
PE[2]/CLKSEL
I/O
1 Input
46
PE[1]/
BOOTSEL[1]
I/O
1
Input
47
PE[0]/
BOOTSEL[0]
I/O
1
Input
48
VSSRTC
RTC Gnd
49
RTCOUT
O
50
RTCIN
I
51
VDDRTC
RTC power
52
N/C
53
PD[7]/SDQM[1]
I/O
1
Low
54
PD[6]/SDQM[0]
I/O
1
Low
55
PD[5]
I/O
1
Low
56
PD[4]
I/O
1
Low
57
VDDIO
Pad Pwr
58
TMS
I
with p/u*
59
PD[3]
I/O
1
Low
60
PD[2]
I/O
1
Low
61
PD[1]
I/O
1
Low
62
PD[0]/LEDFLSH
I/O
1
Low
63
SSICLK
I/O
1
Input
64
VSSIO
Pad Gnd
65
SSITXFR
I/O
1
Low
66
SSITXDA
O
1
Low
67
SSIRXDA
I
68
SSIRXFR
I/O
Input
69
ADCIN
I
70
nADCCS
O
1
High
71
VSSCORE
Core Gnd
72
VDDCORE
Core Pwr
73
VSSIO
Pad Gnd
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
Type
Strength
Reset
State
30
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
74
VDDIO
Pad Pwr
75
DRIVE[1]
I/O 2
High /
Low
76
DRIVE[0]
I/O 2
High /
Low
77
ADCCLK
O
1
Low
78
ADCOUT
O
1
Low
79
SMPCLK
O
1
Low
80
FB[1]
I
81
VSSIO
Pad Gnd
82
FB[0]
I
83
COL[7]
O
1
High
84
COL[6]
O
1
High
85
COL[5]
O
1
High
86
COL[4]
O
1
High
87
COL[3]
O
1
High
88
COL[2]
O
1
High
89
VDDIO
Pad Pwr
90
TCLK
I
91
COL[1]
O
1
High
92
COL[0]
O
1
High
93
BUZ
O
1
Low
94
D[31]
I/O
1
Low
95
D[30]
I/O
1
Low
96
D[29]
I/O
1
Low
97
D[28]
I/O
1
Low
98
VSSIO
Pad Gnd
99
A[27]/DRA[0]
O
2
Low
100
D[27]
I/O
1
Low
101
A[26]/DRA[1]
O
2
Low
102
D[26]
I/O
1
Low
103
A[25]/DRA[2]
O
2
Low
104
D[25]
I/O
1
Low
105
HALFWORD
O
1
Low
106
A[24]/DRA[3]
O
1
Low
107
VDDIO
Pad Pwr
--
108
VSSIO
Pad Gnd
--
109
D[24]
I/O
1
Low
110
A[23]/DRA[4]
O
1
Low
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
Type
Strength
Reset
State
111
D[23]
I/O
1
Low
112
A[22]/DRA[5]
O
1
Low
113
D[22]
I/O
1
Low
114
A[21]/DRA[6]
O
1
Low
115
D[21]
I/O
1
Low
116
VSSIO
Pad Gnd
117
A[20]/DRA[7]
O
1
Low
118
D[20]
I/O
1
Low
119
A[19]/DRA[8]
O
1
Low
120
D[19]
I/O
1
Low
121
A[18]/DRA[9]
O
1
Low
122
D[18]
I/O
1
Low
123
VDDIO
Pad Pwr
124
VSSIO
Pad Gnd
125
nTRST
I
126
A[17]/DRA[10]
O
1
Low
127
D[17]
I/O
1
Low
128
A[16]/DRA[11]
O
1
Low
129
D[16]
I/O
1
Low
130
A[15]/DRA[12]
O
1
Low
131
D[15]
I/O
1
Low
132
A[14]/DRA[13]
O
1
Low
133
D[14]
I/O
1
Low
134
A[13]/DRA[14]
O
1
Low
135
D[13]
I/O
1
Low
136
A[12]
O
1
Low
137
D[12]
I/O
1
Low
138
A[11]
O
1
Low
139
VDDIO
Pad Pwr
140
VSSIO
Pad Gnd
141
D[11]
I/O
1
Low
142
A[10]
O
1
Low
143
D[10]
I/O
1
Low
144
A[9]
O
1
Low
145
D[9]
I/O
1
Low
146
A[8]
O
1
Low
147
D[8]
I/O
1
Low
148
A[7]
O
1
Low
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
Type
Strength
Reset
State
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
31
EP7311
High-Performance, Low-Power System on Chip
*With p/u' means with internal pull-up on the pin.
149
VSSIO
Pad Gnd
150
D[7]
I/O
1
Low
151
nBATCHG
I
152
nEXTPWR
I
153
BATOK
I
154
nPOR
I
Schmitt
155
nMEDCHG/
nBROM
I
156
nURESET
I
Schmitt
157
VDDOSC
Osc Pwr
158
MOSCIN
Osc
159
MOSCOUT
Osc
160
VSSOSC
Osc Gnd
161
WAKEUP
I
Schmitt
162
nPWRFL
I
163
A[6]
O
1
Low
164
D[6]
I/O
1
Low
165
A[5]
Out
1
Low
166
D[5]
I/O
1
Low
167
VDDIO
Pad Pwr
168
VSSIO
Pad Gnd
169
A[4]
O
1
Low
170
D[4]
I/O
1
Low
171
A[3]
O
2
Low
172
D[3]
I/O
1
Low
173
A[2]
O
2
Low
174
VSSIO
Pad Gnd
175
D[2]
I/O
1
Low
176
A[1]
O
2
Low
177
D[1]
I/O
1
Low
178
A[0]
O
2
Low
179
D[0]
I/O
1
Low
180
VSS CORE
Core Gnd
181
VDD CORE
Core Pwr
182
VSSIO
Pad Gnd
183
VDDIO
Pad Pwr
184
CL[2]
O
1
Low
185
CL[1]
O
1
Low
186
FRM
O
1
Low
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
Type
Strength
Reset
State
187
M
O
1
Low
188
DD[3]
I/O
1
Low
189
DD[2]
I/O
1
Low
190
VSSIO
Pad Gnd
191
DD[1]
I/O
1
Low
192
DD[0]
I/O
1
Low
193
nSDCS[1]
O
1
High
194
nSDCS[0]
O
1
High
195
SDQM[3]
I/O
2
Low
196
SDQM[2]
I/O
2
Low
197
VDDIO
Pad Pwr
198
VSSIO
Pad Gnd
199
SDCKE
I/O
2
Low
200
SDCLK
I/O
2
Low
201
nMWE/nSDWE
O
1
High
202
nMOE/nSDCAS
O
1
High
203
VSSIO
Pad Gnd
204
nCS[0]
O
1
High
205
nCS[1]
O
1
High
206
nCS[2]
O
1
High
207
nCS[3]
O
1
High
208
nCS[4]
O
1
High
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
Type
Strength
Reset
State
32
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
204-Ball TFBGA Package Characteristics
204-Ball TFBGA Package Specifications
Figure 17. 204-Ball TFBGA Package
Ř0.25~0.35(204X)
Ř0.15 M C A B
Ř0.08 M C
0.15(4X) C
0.20
~
0
.30
1.20
MA
X
.
SEATING PLANE
0.36
0.53±
0.05
0.20
C
TOP VIEW
BOTTOM VIEW
13±0.05
13±
0.05
A
B
C
0.10
C
Ball Diameter :
Ball Pitch :
0.53
0.3
Substrate Thickness :
Mold Thickness :
0.65
0.36
20
Y
0.65
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
19 18 17 16 15 14 13 12 11 10 9 8
7 6 5 4 3
2 1
12.35
0.65
17
19 20
18
16
14 15
12 13
9 10 11
7 8
4
5
6
2 3
1
C
K
J
H
G
F
E
D
A
B
Y
W
V
U
T
R
P
N
M
L
A1 CORNER
A1 CORNER
12.35
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
33
EP7311
High-Performance, Low-Power System on Chip
204-Ball TFBGA Pinout (Top View)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
A VDDIO EXPCLK nCS3
nCS1
nMWE/
nSDWE
SDQM2 nSDCS1
DD2
FRM
CL1
GNDCOR
E
D1
A2
D4
A5
nPWRFL MOSCOUT GNDIO
GNDIO
GNDIO
A
B WORD
VDDIO
nCS5
nCS2
nMOE/
nSDCAS
SDCKE nSDCS0
DD1
M
CL2
D0
A1
D3
A4
D6
WAKEUP MOSCIN
GNDIO
GNDIO nURESET B
C
RUN/
CLKEN
EXPRDY VDDIO
nCS4
nCS0
SDCLK SDQM3
DD0
DD3
VDDCO
RE
A0
D2
A3
D5
A6
GNDOS
C
VDDOSC
GNDIO
BATOK
nPOR
C
D
PB7
RXD2
VDDIO
GNDIO
nBATCHG
A7
D
E
PB4
TXD2
WRITE/
nSDRAS
nMEDCHG
/nBROM
nEXTPWR
D9
E
F
PB3
PB6
TDI
D7
A8
D10
F
G
PB1/
PRDY2
PB2
PB5
D8
A9
D11
G
H
PA7
TDO
PB0/
PRDY1
A10
D12
A12
H
J
PA4
PA5
PA6
A11
D13
A13/
DRA14
J
K
PA1
PA2
VDDIO
D14
A14/
DRA13
D15
K
L
TXD1 LEDDRV
PA3
VDDIO
D16
A16/
DRA11
L
M
RXD1
CTS
PA0
A15/
DRA12
A17/
DRA10
nTRST M
N
DSR
nTEST1 PHDIN
D17
D19
A18/
DRA9
N
P
EINT3
nEINT2
DCD
D18
A20/
DRA7
D20
P
R nEXTFIQ
PE2/
CLKSEL
nTEST0
A19/
DRA8
D22
A21/
DRA6
R
T
PE1/
BOOT
SEL1
PE0/
BOOT
SEL0
nEINT1
D21
D23
A22/
DRA5
T
U GNDRTCRTCOUT RTCIN
HALF
WORD
D24
A23/
DRA4
U
V VDDRTC GNDIO GNDIO
PD7/
SDQM1
PD4
PD2
SSICLK SSIRXDA nADCCS VDDIO ADCCLK
COL7
COL4
TCLK
BUZ
D29
A26/
DRA1
VDDIO
VDDIO
A24/
DRA3
V
W GNDIO
GNDIO GNDIO
PD6/SD
QM0
TMS
PD1
SSITXFR SSIRXFR
GNDCO
RE
DRIVE1 ADCOUT
FB0
COL5
COL2
COL0
D30
A27/
DRA0
D26
VDDIO
D25
W
Y GNDIO
GNDIO GNDIO
PD5
PD3
PD0/
LED
FLSH
SSITXDA ADCIN
VDDCO
RE
DRIVE0 SMPLCK
FB1
COL6
COL3
COL1
D31
D28
D27
A25/
DRA2
VDDIO
Y
34
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
204-Ball TFBGA Ball Listing
The list is ordered by ball location.
Table 21. 204-Ball TFBGA Ball Listing
Ball Location
Name
Strength
Reset
State
Type
Description
A1
VDDIO
Pad power
Digital I/O power,
3.3 V
A2
EXPCLK
1
I
Expansion clock
input
A3
nCS[3]
1
High
O
Chip select 3
A4
nCS[1]
1
High
O
Chip select 1
A5
nMWE/nSDWE
1
High
O
ROM, expansion
write enable/
SDRAM write enable
control signal
A6
SDQM[2]
2
Low
O
SDRAM byte lane
mask
A7
nSDCS[1]
1
High
O
SDRAM chip select
2
A8
DD[2]
1
Low
O
LCD serial display
data
A9
FRM
1
Low
O
LCD frame
synchronization
pulse
A10
CL[1]
1
Low
O
LCD line clock
A11
VSSCORE
Core ground
Core ground
A12
D[1]
1
Low
I/O
Data I/O
A13
A[2]
2
Low
O
System byte address
A14
D[4]
1
Low
I/O
Data I/O
A15
A[5]
1
Low
O
System byte address
A16
nPWRFL
I
Power fail sense
input
A17
MOSCOUT
O
Main oscillator out
A18
VSSIO
Pad ground
I/O ground
A19
VSSIO
Pad ground
I/O ground
A20
VSSIO
Pad ground
I/O ground
B1
WORD
1
Low
O
Word access select
output
B2
VDDIO
Pad power
Digital I/O power, 3.3
V
B3
nCS[5]
1
Low
O
Chip select 5
B4
nCS[2]
1
High
O
Chip select 2
B5
nMOE/nSDCAS
1
High
O
ROM, expansion OP
enable/SDRAM CAS
control signal
B6
SDCKE
2
Low
O
SDRAM clock
enable output
B7
nSDCS[0]
1
High
O
SDRAM chip select
0
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
35
EP7311
High-Performance, Low-Power System on Chip
B8
DD[1]
1
Low
O
LCD serial display
data
B9
M
1
Low
O
LCD AC bias drive
B10
CL[2]
1
Low
0
LCD pixel clock out
B11
D[0]
1
Low
I/O
Data I/O
B12
A[1]
2
Low
O
System byte address
B13
D[3]
2
Low
I/O
Data I/O
B14
A[4]
1
Low
O
System byte address
B15
D[6]
1
Low
I/O
Data I/O
B16
WAKEUP
Schmitt
I
System wake up
input
B17
MOSCIN
I
Main oscillator input
B18
VSSIO
Pad ground
I/O ground
B19
VSSIO
Pad ground
I/O ground
B20
nURESET
Schmitt
I
User reset input
C1
RUN/CLKEN
1
Low
0
Run output / clock
enable output
C2
EXPRDY
1
I
Expansion port
ready input
C3
VDDIO
Pad power
Digital I/O power,
3.3 V
C4
nCS[4]
1
High
O
Chip select 4
C5
nCS[0]
1
High
O
Chip select 0
C6
SDCLK
2
Low
O
SDRAM clock out
C7
SDQM[3]
2
Low
O
SDRAM byte lane
mask
C8
DD[0]
1
Low
O
LCD serial display
data
C9
DD[3]
1
Low
O
LCD serial display
data
C10
VDDCORE
Core power
Digital core power,
2.5 V
C11
A[0]
2
Low
O
System byte address
C12
D[2]
1
Low
I/O
Data I/O
C13
A[3]
2
Low
O
System byte address
C14
D[5]
1
Low
I/O
Data I/O
C15
A[6]
1
Low
O
System byte address
C16
VSSOSC
Oscillator ground
PLL ground
C17
VDDOSC
Oscillator power
Oscillator power in,
2.5V
C18
VSSIO
Pad ground
I/O ground
C19
BATOK
I
Battery ok input
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
Reset
State
Type
Description
36
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
C20
nPOR
Schmitt
I
Power-on reset input
D1
PB[7]
1
Input
I
GPIO port B
D2
RXD[2]
I
UART 2 receive data
input
D3
VDDIO
Pad power
Digital I/O power,
3.3V
D18
VSSIO
Pad ground
I/O ground
D19
nBATCHG
I
Battery changed
sense input
D20
A[7]
1
Low
O
System byte address
E1
PB[4]
1
Input
I
GPIO port B
E2
TXD[2]
1
High
O
UART 2 transmit
data output
E3
WRITE/nSDRAS
1
Low
O
Transfer direction /
SDRAM RAS signal
output
E18
nMEDCHG/nBROM
I
Media change
interrupt input /
internal ROM boot
enable
E19
nEXTPWR
I
External power
supply sense input
E20
D[9]
1
Low
I/O
Data I/O
F1
PB[3]
1
Input
I/O
GPIO port B
F2
PB[6]
1
Input
I/O
GPIO port B
F3
TDI
with p/u*
I
JTAG data input
F18
D[7]
1
Low
I/O
Data I/O
F19
A[8]
1
Low
O
System byte address
F20
D[10]
1
Low
I/O
Data I/O
G1
PB[1]
1
Input
I/O
G2
PB[2]
1
Input
I/O
GPIO port B
G3
PB[5]
1
Input
I/O
GPIO port B
G18
D[8]
1
Input
I/O
Data I/O
G19
A[9]
1
Low
O
System byte address
G20
D[11]
1
Low
I/O
Data I/O
H1
PA[7]
1
Input
I/O
GPIO port A
H[2]
TDO
1
Input
O
JTAG data out
H[3]
PB[0]
1
Input
I/O
GPIO port B
H[18]
A[10]
1
Low
O
System byte address
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
Reset
State
Type
Description
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
37
EP7311
High-Performance, Low-Power System on Chip
H19
D[12]
1
Low
I/O
Data I/O
H20
A[12]
1
Low
O
System byte address
J1
PA[4]
1
Input
I/O
GPIO port A
J2
PA[5]
1
Input
I/O
GPIO port A
J3
PA[6]
1
Input
I/O
GPIO port A
J18
A[11]
1
Low
O
System byte address
J19
D[13]
1
Low
I/O
Data I/O
J20
A[13]/DRA[14]
1
Low
O
System byte address
/ SDRAM address
K1
PA[1]
1
Input
I/O
GPIO port A
K2
PA[2]
1
Input
I/O
GPIO port A
K3
VDDIO
Pad power
Digital I/O power,
3.3V
K18
D[14]
1
Low
I/O
Data I/O
K19
A[14]/DRA[13]
1
Low
O
System byte address
/ SDRAM address
K20
D[15]
1
Low
I/O
Data I/O
L1
TXD[1]
1
High
O
UART 1 transmit
data out
L2
LEDDRV
1
Low
O
IR LED drive
L3
PA[3]
1
Input
I/O
GPIO port A
L18
VDDIO
Pad power
Digital I/O power,
3.3V
L19
D[16]
1
Low
I/O
Data I/O
L20
A[16]/DRA[11]
1
Low
O
System byte address
/ SDRAM address
M1
RXD[1]
I
UART 1 receive data
input
M2
CTS
I
UART 1 clear to
send input
M3
PA[0]
1
Input
I/O
GPIO port A
M18
A[15]/DRA[12]
1
Low
O
System byte address
/ SDRAM address
M19
A[17]/DRA[10]
1
Low
O
System byte address
/ SDRAM address
M20
nTRST
I
JTAG async reset
input
N1
DSR
I
UART 1 data set
ready input
N2
nTEST[1]
With p/u*
I
Test mode select
input
N3
PHDIN
I
Photodiode input
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
Reset
State
Type
Description
38
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
N18
D[17]
1
Low
I/O
Data I/O
N19
D[19]
1
Low
I/O
Data I/O
N20
A[18]/DRA[9]
1
Low
O
System byte address
/ SDRAM address
P1
EINT[3]
I
External interrupt
P2
nEINT[2]
I
External interrupt
input
P3
DCD
I
UART 1 data carrier
detect
P18
D[18]
1
Low
I/O
Data I/O
P19
A[20]/DRA[7]
1
Low
O
System byte address
/ SDRAM address
P20
D[20]
1
Low
I/O
Data I/O
R1
nEXTFIQ
I
External fast
interrupt input
R2
PE[2]/CLKSEL
1
Input
I/O
GPIO port E / clock
input mode select
R3
nTEST[0]
With p/u*
I
Test mode select
input
R18
A[19]/DRA[8]
1
Low
O
System byte address
/ SDRAM address
R19
D[22]
1
Low
I/O
Data I/O
R20
A[21]/DRA[6]
1
Low
O
System byte address
/ SDRAM address
T1
PE[1]/BOOTSEL[1]
1
Input
I/O
GPIO port E / boot
mode select
T2
PE[0]/BOOTSEL[0]
1
Input
I/O
GPIO port E / boot
mode select
T3
nEINT[1]
I
External interrupt
input
T18
D[21]
1
Low
I/O
Data I/O
T19
D[23]
1
Low
I/O
Data I/O
T20
A[22]/DRA[5]
1
Low
O
System byte address
/ SDRAM address
U1
VSSRTC
RTC ground
Real time clock
ground
U2
RTCOUT
O
Real time clock
oscillator output
U3
RTCIN
I/O
Real time clock
oscillator input
U18
HALFWORD
1
Low
O
Halfword access
select output
U19
D[24]
1
Low
I/O
Data I/O
U20
A[23]/DRA[4]
1
Low
O
System byte address
/ SDRAM address
V1
VDDRTC
RTC power
Real time clock
power, 2.5V
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
Reset
State
Type
Description
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
39
EP7311
High-Performance, Low-Power System on Chip
V2
VSSIO
Pad ground
I/O ground
V3
VSSIO
Pad ground
I/O ground
V4
PD[7]/SDQM[1]
1
Low
I/O
GPIO port D /
SDRAM byte lane
mask
V5
PD[4]
1
Low
I/O
GPIO port D
V6
PD[2]
1
Low
I/O
GPIO port D
V7
SSICLK
1
Input
I/O
DAI/CODEC/SSI2
serial clock
V8
SSIRXDA
I/O
DAI/CODEC/SSI2
serial data input
V9
nADCCS
1
High
O
SSI1 ADC chip
select
V10
VDDIO
Pad power
Digital I/O power,
3.3V
V11
ADCCLK
1
Low
O
SSI1 ADC serial
clock
V12
COL[7]
1
High
O
Keyboard scanner
column drive
V13
COL[4]
1
High
O
Keyboard scanner
column drive
V14
TCLK
I
JTAG clock
V15
BUZ
1
Low
O
Buzzer drive output
V16
D[29]
1
Low
I/O
Data I/O
V17
A[26]/DRA[1]
2
Low
O
System byte address
/ SDRAM address
V18
VDDIO
Pad power
Digital I/O power,
3.3 V
V19
VDDIO
Pad power
Digital I/O power,
3.3 V
V20
A[24]/DRA[3]
`
Low
O
System byte address
/ SDRAM address
W1
VSSIO
Pad ground
I/O ground
W2
VSSIO
Pad ground
I/O ground
W3
VSSIO
Pad ground
I/O ground
W4
PD[6]/SDQM[0]
1
Low
I/O
GPIO port D /
SDRAM byte lane
mask
W5
TMS
with p/u*
I
JTAG mode select
W6
PD[1]
1
Low
I/O
GPIO port D
W7
SSITXFR
1
Low
I/O
DAI/CODEC/SSI2
frame sync
W8
SSIRXFR
1
Input
I/O
DAI/CODEC/SSI2
frame sync
W9
VSSCORE
Core Ground
Core Ground
W10
DRIVE[1]
2
High /
Low
I/O
PWM drive output
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
Reset
State
Type
Description
40
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
W11
ADCOUT
1
Low
O
SSI1 ADC serial
data output
W12
FB[0]
I
PWM feedback input
W13
COL[5]
1
High
O
Keyboard scanner
column drive
W14
COL[2]
1
High
O
Keyboard scanner
column drive
W15
COL[0]
1
High
O
Keyboard scanner
column drive
W16
D[30]
1
Low
I/O
Data I/O
W17
A[27]/DRA[0]
2
Low
O
System byte address
/ SDRAM address
W18
D[26]
1
Low
I/O
Data I/O
W19
VDDIO
Pad power
Digital I/O power,
3.3V
W20
D[25]
1
Low
I/O
Data I/O
Y1
VSSIO
Pad ground
I/O ground
Y2
VSSIO
Pad ground
I/O ground
Y3
VSSIO
Pad ground
I/O ground
Y4
PD[5]
1
Low
I/O
GPIO port D
Y5
PD[3]
1
Low
I/O
GPIO port D
Y6
PD[0]/LEDFLSH
1
Low
I/O
GPIO port D / LED
blinker output
Y7
SSITXDA
1
Low
O
DAI/CODEC/SSI2
serial data output
Y8
ADCIN
I
SSI1 ADC serial
input
Y9
VDDCORE
Core power
Digital core power,
2.5V
Y10
DRIVE[0]
2
Input
I/O
PWM drive output
Y11
SMPCLK
1
Low
O
SSI1 ADC sample
clock
Y12
FB[1]
I
PWM feedback input
Y13
COL[6]
1
High
O
Keyboard scanner
column drive
Y14
COL[3]
1
High
O
Keyboard scanner
column drive
Y15
COL[1]
1
High
O
Keyboard scanner
column drive
Y16
D[31]
1
Low
I/O
Data I/O
Y17
D[28]
1
Low
I/O
Data I/O
Y18
D[27]
1
Low
I/O
Data I/O
Y19
A[25]/DRA[2]
2
Low
O
System byte address
/ SDRAM address
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
Reset
State
Type
Description
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
41
EP7311
High-Performance, Low-Power System on Chip
*
"With p/u" means with internal pull-up of 100 KOhms on the pin.
Strength 1 = 4 ma
Strength 2 = 12 ma
Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.
256-Ball PBGA Package Characteristics
256-Ball PBGA Package Specifications
Figure 18. 256-Ball PBGA Package
Note:
1) For pin locations see
Table V
.
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter
3) Before beginning any new EP7311 design, contact Cirrus Logic for the latest package information.
256-Ball PBGA Pinout (Top View)
Y20
VDDIO
Pad power
Digital I/O power,
3.3V
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
VDDIO
nCS[4]
nCS[1]
SDCLK
SDQM[3]
DD[1]
M
VDDIO
D[0]
D[2]
A[3]
VDDIO
A[6]
MOSCOUT VDDOSC
VSSIO
A
B
nCS[5]
VDDIO
nCS[3]
nMOE/
nSDCAS
VDDIO
nSDCS[1]
DD[2]
CL[1]
VDDCORE
D[1]
A[2]
A[4]
A[5]
WAKEUP
VDDIO
nURESET B
C
VDDIO
EXPCLK
VSSIO
VDDIO
VSSIO
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
nPOR
nEXTPWR C
D
WRITE/
nSDRAS
EXPRDY
VSSIO
VDDIO
nCS[2]
nMWE/
nSDWE
nSDCS[0]
CL[2]
VSSRTC
D[4]
nPWRFL
MOSCIN
VDDIO
VSSIO
D[7]
D[8]
D
E
RXD[2]
PB[7]
TDI
WORD
VSSIO
nCS[0]
SDQM[2]
FRM
A[0]
D[5]
VSSOSC
VSSIO
nMEDCHG/
nBROM
VDDIO
D[9]
D[10]
E
F
PB[5]
PB[3]
VSSIO
TXD[2]
RUN/
CLKEN
VSSIO
SDCKE
DD[3]
A[1]
D[6]
VSSRTC
BATOK
nBATCHG
VSSIO
D[11]
VDDIO
F
G
PB[1]
VDDIO
TDO
PB[4]
PB[6]
VSSRTC
VSSRTC
DD[0]
D[3]
VSSRTC
A[7]
A[8]
A[9]
VSSIO
D[12]
D[13]
G
H
PA[7]
PA[5]
VSSIO
PA[4]
PA[6]
PB[0]
PB[2]
VSSRTC
VSSRTC
A[10]
A[11]
A[12]
A[13]/
DRA[14]
VSSIO
D[14]
D[15]
H
J
PA[3]
PA[1]
VSSIO
PA[2]
PA[0]
TXD[1]
CTS
VSSRTC
VSSRTC
A[17]/
DRA[10]
A[16]/
DRA[11]
A[15]/
DRA[12]
A[14]/
DRA[13]
nTRST
D[16]
D[17]
J
K LEDDRV
PHDIN
VSSIO
DCD
nTEST[1]
EINT[3]
VSSRTC
ADCIN
COL[4]
TCLK
D[20]
D[19]
D[18]
VSSIO
VDDIO
VDDIO
K
L
RXD[1]
DSR
VDDIO
nEINT[1]
PE[2]/
CLKSEL
VSSRTC
PD[0]/
LEDFLSH
VSSRTC
COL[6]
D[31]
VSSRTC
A[22]/
DRA[5]
A[21]/
DRA[6]
VSSIO
A[18]/
DRA[9]
A[19]/
DRA[8]
L
M nTEST[0]
nEINT[2]
VDDIO
PE[0]/
BOOTSEL[0]
TMS
VDDIO
SSITXFR
DRIVE[1]
FB[0]
COL[0]
D[27]
VSSIO
A[23]/
DRA[4]
VDDIO
A[20]/
DRA[7]
D[21]
M
N nEXTFIQ
PE[1]/
BOOTSEL[1]
VSSIO
VDDIO
PD[5]
PD[2]
SSIRXDA
ADCCLK
SMPCLK
COL[2]
D[29]
D[26]
HALFWORD
VSSIO
D[22]
D[23]
N
P VSSRTC
RTCOUT
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
VDDIO
VSSIO
VDDIO
VSSIO
VSSIO
VDDIO
VSSIO
D[24]
VDDIO
P
R
RTCIN
VDDIO
PD[4]
PD[1]
SSITXDA
nADCCS
VDDIO
ADCOUT
COL[7]
COL[3]
COL[1]
D[30]
A[27]/
DRA[0]
A[25]/
DRA[2]
VDDIO
A[24]\
DRA[3]
R
T VDDRTC
PD[7]/
SDQM[1]
PD[6]/
SDQM[0]
PD[3]
SSICLK
SSIRXFR VDDCORE DRIVE[0]
FB[1]
COL[5]
VDDIO
BUZ
D[28]
A[26]/
DRA[1]
D[25]
VSSIO
T
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
Strength
Reset
State
Type
Description
42
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
TOP VIEW
17.00 (0.669)
15.00 (0.590)
SIDE VIEW
BOTTOM VIEW
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
1.00 (0.040)
Pin 1 Indicator
Pin 1 Corner
Pin 1 Corner
16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
15.00 (0.590)
2 Layer
17.00 (0.669)
17.00 (0.669)
1.00 (0.040)
1.00 (0.040)
1.00 (0.040)
30° TYP
REF
REF
0.50
3 Places
0.85 (0.034)
±0.05 (.002)
0.40 (0.016)
±0.05 (.002)
0.36 (0.014)
17.00 (0.669)
R
D1
E1
D
E
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.09 (0.004)
JEDEC #: MO-151
Ball Diameter: 0.50 mm ± 0.10 mm
17 Ą 17 Ą 1.61 mm body
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
43
EP7311
High-Performance, Low-Power System on Chip
256-Ball PBGA Ball Listing
The list is ordered by ball location.
Table V. 256-Ball PBGA Ball Listing
Ball Location
Name
Type
Description
A1
VDDIO
Pad power
Digital I/O power, 3.3V
A2
nCS[4]
O
Chip select out
A3
nCS[1]
O
Chip select out
A4
SDCLK
O
SDRAM clock out
A5
SDQM[3]
O
SDRAM byte lane mask
A6
DD[1]
O
LCD serial display data
A7
M
O
LCD AC bias drive
A8
VDDIO
Pad power
Digital I/O power, 3.3V
A9
D[0]
I/O
Data I/O
A10
D[2]
I/O
Data I/O
A11
A[3]
O
System byte address
A12
VDDIO
Pad power
Digital I/O power, 3.3V
A13
A[6]
O
System byte address
A14
MOSCOUT
O
Main oscillator out
A15
VDDOSC
Oscillator
power
Oscillator power in, 2.5V
A16
VSSIO
Pad ground
I/O ground
B1
nCS[5]
O
Chip select out
B2
VDDIO
Pad power
I/O ground
B3
nCS[3]
O
Chip select out
B4 nMOE/nSDCAS
O
ROM, expansion OP enable/SDRAM
CAS control signal
B5
VDDIO
Pad power
Digital I/O power, 3.3V
B6
nSDCS[1]
O
SDRAM chip select out
B7
DD[2]
O
LCD serial display data
B8
CL[1]
O
LCD line clock
B9
VDDCORE
Core power
Digital core power, 2.5V
B10
D[1]
I/O
Data I/O
B11
A[2]
O
System byte address
B12
A[4]
O
System byte address
B13
A[5]
O
System byte address
B14
WAKEUP
I
System wake up input
B15
VDDIO
Pad power
Digital I/O power, 3.3V
B16
nURESET
I
User reset input
C1
VDDIO
Pad power
Digital I/O power, 3.3V
C2
EXPCLK
I
Expansion clock input
C3
VSSIO
Pad ground
I/O ground
C4
VDDIO
Pad power
Digital I/O power, 3.3V
C5
VSSIO
Pad ground
I/O ground
C6
VSSIO
Pad ground
I/O ground
C7
VSSIO
Pad ground
I/O ground
C8
VDDIO
Pad power
Digital I/O power, 3.3V
C9
VSSIO
Pad ground
I/O ground
C10
VSSIO
Pad ground
I/O ground
C11
VSSIO
Pad ground
I/O ground
C12
VDDIO
Pad power
Digital I/O power, 3.3V
C13
VSSIO
Pad ground
I/O ground
C14
VSSIO
Pad ground
I/O ground
C15
nPOR
I
Power-on reset input
C16
nEXTPWR
I
External power supply sense input
D1 WRITE/nSDRAS
O
Transfer direction / SDRAM RAS signal
output
D2
EXPRDY
I
Expansion port ready input
D3
VSSIO
Pad ground
I/O ground
D4
VDDIO
Pad power
Digital I/O power, 3.3V
D5
nCS[2]
O
Chip select out
D6 nMWE/nSDWE
O
ROM, expansion write enable/ SDRAM
write enable control signal
D7
nSDCS[0]
O
SDRAM chip select out
D8
CL[2]
O
LCD pixel clock out
D9
VSSRTC
Core ground Real time clock ground
D10
D[4]
I/O
Data I/O
D11
nPWRFL
I
Power fail sense input
D12
MOSCIN
I
Main oscillator input
D13
VDDIO
Pad power
Digital I/O power, 3.3V
D14
VSSIO
Pad ground
I/O ground
D15
D[7]
I/O
Data I/O
D16
D[8]
I/O
Data I/O
E1
RXD[2]
I
UART 2 receive data input
E2
PB[7]
I
GPIO port B
E3
TDI
I
JTAG data input
E4
WORD
O
Word access select output
E5
VSSIO
Pad ground
I/O ground
E6
nCS[0]
O
Chip select out
E7
SDQM[2]
O
SDRAM byte lane mask
E8
FRM
O
LCD frame synchronization pulse
E9
A[0]
O
System byte address
E10
D[5]
I/O
Data I/O
E11
VSSOSC
Oscillator
ground
PLL ground
E12
VSSIO
Pad ground
I/O ground
E13
nMEDCHG/nBROM
I
Media change interrupt input / internal
ROM boot enable
E14
VDDIO
Pad power
Digital I/O power, 3.3V
E15
D[9]
I/O
Data I/O
E16
D[10]
I/O
Data I/O
F1
PB[5]
I
GPIO port B
F2
PB[3]
I
GPIO port B
F3
VSSIO
Pad ground
I/O ground
F4
TXD[2]
O
UART 2 transmit data output
F5
RUN/CLKEN
O
Run output / clock enable output
F6
VSSIO
Pad ground
I/O ground
Table V. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
Description
44
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
F7
SDCKE
O
SDRAM clock enable output
F8
DD[3]
O
LCD serial display data
F9
A[1]
O
System byte address
F10
D[6]
I/O
Data I/O
F11
VSSRTC
RTC ground Real time clock ground
F12
BATOK
I
Battery ok input
F13
nBATCHG
I
Battery changed sense input
F14
VSSIO
Pad ground
I/O ground
F15
D[11]
I/O
Data I/O
F16
VDDIO
Pad power
Digital I/O power, 3.3V
G1
PB[1]
I
GPIO port B
G2
VDDIO
Pad power
Digital I/O power, 3.3V
G3
TDO
O
JTAG data out
G4
PB[4]
I
GPIO port B
G5
PB[6]
I
GPIO port B
G6
VSSRTC
Core ground Real time clock ground
G7
VSSRTC
RTC ground Real time clock ground
G8
DD[0]
O
LCD serial display data
G9
D[3]
I/O
Data I/O
G10
VSSRTC
RTC ground Real time clock ground
G11
A[7]
O
System byte address
G12
A[8]
O
System byte address
G13
A[9]
O
System byte address
G14
VSSIO
Pad ground
I/O ground
G15
D[12]
I/O
Data I/O
G16
D[13]
I/O
Data I/O
H1
PA[7]
I
GPIO port A
H2
PA[5]
I
GPIO port A
H3
VSSIO
Pad ground
I/O ground
H4
PA[4]
I
GPIO port A
H5
PA[6]
I
GPIO port A
H6
PB[0]
I
GPIO port B
H7
PB[2]
I
GPIO port B
H8
VSSRTC
RTC ground Real time clock ground
H9
VSSRTC
RTC ground Real time clock ground
H10
A[10]
O
System byte address
H11
A[11]
O
System byte address
H12
A[12]
O
System byte address
H13
A[13]/DRA[14]
O
System byte address / SDRAM address
H14
VSSIO
Pad ground
I/O ground
H15
D[14]
I/O
Data I/O
H16
D[15]
I/O
Data I/O
J1
PA[3]
I
GPIO port A
J2
PA[1]
I
GPIO port A
J3
VSSIO
Pad ground
I/O ground
J4
PA[2]
I
GPIO port A
J5
PA[0]
I
GPIO port A
J6
TXD[1]
O
UART 1 transmit data out
Table V. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
Description
J7
CTS
I
UART 1 clear to send input
J8
VSSRTC
RTC ground Real time clock ground
J9
VSSRTC
RTC ground Real time clock ground
J10
A[17]/DRA[10]
O
System byte address / SDRAM address
J11
A[16]/DRA[11]
O
System byte address / SDRAM address
J12
A[15]/DRA[12]
O
System byte address / SDRAM address
J13
A[14]/DRA[13]
O
System byte address / SDRAM address
J14
nTRST
I
JTAG async reset input
J15
D[16]
I/O
Data I/O
J16
D[17]
I/O
Data I/O
K1
LEDDRV
O
IR LED drivet
K2
PHDIN
I
Photodiode input
K3
VSSIO
Pad ground
I/O ground
K4
DCD
I
UART 1 data carrier detect
K5
nTEST[1]
I
Test mode select input
K6
EINT[3]
I
External interrupt
K7
VSSRTC
RTC ground Real time clock ground
K8
ADCIN
I
SSI1 ADC serial input
K9
COL[4]
O
Keyboard scanner column drive
K10
TCLK
I
JTAG clock
K11
D[20]
I/O
Data I/O
K12
D[19]
I/O
Data I/O
K13
D[18]
I/O
Data I/O
K14
VSSIO
Pad ground
I/O ground
K15
VDDIO
Pad power
Digital I/O power, 3.3V
K16
VDDIO
Pad power
Digital I/O power, 3.3V
L1
RXD[1]
I
UART 1 receive data input
L2
DSR
I
UART 1 data set ready input
L3
VDDIO
Pad power
Digital I/O power, 3.3V
L4
nEINT[1]
I
External interrupt input
L5
PE[2]/CLKSEL
I
GPIO port E / clock input mode select
L6
VSSRTC
RTC ground Real time clock ground
L7
PD[0]/LEDFLSH
I/O
GPIO port D / LED blinker output
L8
VSSRTC
Core ground Real time clock ground
L9
COL[6]
O
Keyboard scanner column drive
L10
D[31]
I/O
Data I/O
L11
VSSRTC
RTC ground Real time clock ground
L12
A[22]/DRA[5]
O
System byte address / SDRAM address
L13
A[21]/DRA[6]
O
System byte address / SDRAM address
L14
VSSIO
Pad ground
I/O ground
L15
A[18]/DRA[9]
O
System byte address / SDRAM address
L16
A[19]/DRA[8]
O
System byte address / SDRAM address
M1
nTEST[0]
I
Test mode select input
M2
nEINT[2]
I
External interrupt input
M3
VDDIO
Pad power
Digital I/O power, 3.3V
M4
PE[0]/BOOTSEL[0]
I
GPIO port E / Boot mode select
M5
TMS
I
JTAG mode select
M6
VDDIO
Pad power
Digital I/O power, 3.3V
Table V. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
Description
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
45
EP7311
High-Performance, Low-Power System on Chip
M7
SSITXFR
I/O
MCP/CODEC/SSI2 frame sync
M8
DRIVE[1]
I/O
PWM drive output
M9
FB[0]
I
PWM feedback input
M10
COL[0]
O
Keyboard scanner column drive
M11
D[27]
I/O
Data I/O
M12
VSSIO
Pad ground
I/O ground
M13
A[23]/DRA[4]
O
System byte address / SDRAM address
M14
VDDIO
Pad power
Digital I/O power, 3.3V
M15
A[20]/DRA[7]
O
System byte address / SDRAM address
M16
D[21]
I/O
Data I/O
N1
nEXTFIQ
I
External fast interrupt input
N2
PE[1]/BOOTSEL[1]
I
GPIO port E / boot mode select
N3
VSSIO
Pad ground
I/O ground
N4
VDDIO
Pad power
Digital I/O power, 3.3V
N5
PD[5]
I/O
GPIO port D
N6
PD[2]
I/O
GPIO port D
N7
SSIRXDA
I/O
MCP/CODEC/SSI2 serial data input
N8
ADCCLK
O
SSI1 ADC serial clock
N9
SMPCLK
O
SSI1 ADC sample clock
N10
COL[2]
O
Keyboard scanner column drive
N11
D[29]
I/O
Data I/O
N12
D[26]
I/O
Data I/O
N13
HALFWORD
O
Halfword access select output
N14
VSSIO
Pad ground
I/O ground
N15
D[22]
I/O
Data I/O
N16
D[23]
I/O
Data I/O
P1
VSSRTC
RTC ground Real time clock ground
P2
RTCOUT
O
Real time clock oscillator output
P3
VSSIO
Pad ground
I/O ground
P4
VSSIO
Pad ground
I/O ground
P5
VDDIO
Pad power
Digital I/O power, 3.3V
P6
VSSIO
Pad ground
I/O ground
P7
VSSIO
Pad ground
I/O ground
P8
VDDIO
Pad power
Digital I/O power, 3.3V
P9
VSSIO
Pad ground
I/O ground
P10
VDDIO
Pad power
Digital I/O power, 3.3V
P11
VSSIO
Pad ground
I/O ground
P12
VSSIO
Pad ground
I/O ground
P13
VDDIO
Pad power
Digital I/O power
P14
VSSIO
Pad ground
I/O ground
P15
D[24]
I/O
Data I/O
P16
VDDIO
Pad power
Digital I/O power, 3.3V
R1
RTCIN
I/O
Real time clock oscillator input
R2
VDDIO
Pad power
Digital I/O power, 3.3V
R3
PD[4]
I/O
GPIO port D
R4
PD[1]
I/O
GPIO port D
R5
SSITXDA
O
MCP/CODEC/SSI2 serial data output
R6
nADCCS
O
SSI1 ADC chip select
Table V. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
Description
R7
VDDIO
Pad power
Digital I/O power, 3.3V
R8
ADCOUT
O
SSI1 ADC serial data output
R9
COL[7]
O
Keyboard scanner column drive
R10
COL[3]
O
Keyboard scanner column drive
R11
COL[1]
O
Keyboard scanner column drive
R12
D[30]
I/O
Data I/O
R13
A[27]/DRA[0]
O
System byte address / SDRAM address
R14
A[25]/DRA[2]
O
System byte address / SDRAM address
R15
VDDIO
Pad power
Digital I/O power, 3.3V
R16
A[24]/DRA[3]
O
System byte address / SDRAM address
T1
VDDRTC
RTC power
Real time clock power, 2.5V
T2
PD[7]/SDQM[1]
I/O
GPIO port D / SDRAM byte lane mask
T3
PD[6]/SDQM[0]
I/O
GPIO port D / SDRAM byte lane mask
T4
PD[3]
I/O
GPIO port D
T5
SSICLK
I/O
MCP/CODEC/SSI2 serial clock
T6 SSIRXFR
­
MCP/CODEC/SSI2 frame sync
T7
VDDCORE
Core power Core power, 2.5V
T8
DRIVE[0]
I/O
PWM drive output
T9
FB[1]
I
PWM feedback input
T10
COL[5]
O
Keyboard scanner column drive
T11
VDDIO
Pad power
Digital I/O power, 3.3V
T12
BUZ
O
Buzzer drive output
T13
D[28]
I/O
Data I/O
T14
A[26]/DRA[1]
O
System byte address / SDRAM address
T15
D[25]
I/O
Data I/O
T16
VSSIO
Pad ground
I/O ground
Table V. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
Description
46
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
JTAG Boundary Scan Signal Ordering
Table W. JTAG Boundary Scan Signal Ordering
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
1
B3
B1
nCS[5]
O
1
4
A2
C2
EXPCLK
I/O
3
5
B1
E4
WORD
O
6
6
E3
D1
WRITE/nSDRAS
O
8
7
C1
F5
RUN/CLKEN
O
10
8
C2
D2
EXPRDY
I
13
9
E2
F4
TXD2
O
14
10
D2
E1
RXD2
I
16
13
F3
E2
PB[7]
I/O
17
14
D1
G5
PB[6]
I/O
20
15
F2
F1
PB[5]
I/O
23
16
G3
G4
PB[4]
I/O
26
17
E1
F2
PB[3]
I/O
29
18
F1
H7
PB[2]
I/O
32
19
G2
G1
PB[1]/PRDY2
I/O
35
20
G1
H6
PB[0]/PRDY1
I/O
38
23
H3
H1
PA[7]
I/O
41
24
H1
H5
PA[6]
I/O
44
25
J3
H2
PA[5]
I/O
47
26
J2
H4
PA[4]
I/O
50
27
J1
J1
PA[3]
I/O
53
28
L3
J4
PA[2]
I/O
56
29
K2
J2
PA[1]
I/O
59
30
K1
J5
PA[0]
I/O
62
31
M3
K1
LEDDRV
O
65
32
L2
J6
TXD1
O
67
34
L1
K2
PHDIN
I
69
35
N3
J7
CTS
I
70
36
M2
L1
RXD1
I
71
37
M1
K4
DCD
I
72
38
P3
L2
DSR
I
73
39
N1
K5
nTEST1
I
74
40
N2
M1
nTEST0
I
75
41
R3
K6
EINT3
I
76
42
P1
M2
nEINT2
I
77
43
P2
L4
nEINT1
I
78
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
47
EP7311
High-Performance, Low-Power System on Chip
44
T3
N1
nEXTFIQ
I
79
45
R1
L5
PE[2]/CLKSEL
I/O
80
46
R2
N2
PE[1]/BOOTSEL1
I/O
83
47
T1
M4
PE[0]/BOOTSEL0
I/O
86
53
T2
T2
PD[7]/SDQM[1]
I/O
89
54
V4
T3
PD[6/SDQM[0]]
I/O
92
55
W4
N5
PD[5]
I/O
95
56
Y4
R3
PD[4]
I/O
98
59
V5
T4
PD[3]
I/O
101
60
W5
N6
PD[2]
I/O
104
61
Y5
R4
PD[1]
I/O
107
62
V6
L7
PD[0]/LEDFLSH
O
110
68
W6
T6
SSIRXFR
I/O
122
69
Y6
K8
ADCIN
I
125
70
W8
R6
nADCCS
O
126
75
Y8
M8
DRIVE1
I/O
128
76
V9
T8
DRIVE0
I/O
131
77
W10
N8
ADCCLK
O
134
78
Y10
R8
ADCOUT
O
136
79
V11
N9
SMPCLK
O
138
80
W11
T9
FB1
I
140
82
Y11
M9
FB0
I
141
83
Y12
R9
COL7
O
142
84
W12
L9
COL6
O
144
85
V12
T10
COL5
O
146
86
Y13
K9
COL4
O
148
87
W13
R10
COL3
O
150
88
V13
N10
COL2
O
152
91
Y14
R11
COL1
O
154
92
W14
M10
COL0
O
156
93
A1
T12
BUZ
O
158
94
V14
L10
D[31]
I/O
160
95
Y15
R12
D[30]
I/O
163
96
W15
N11
D[29]
I/O
166
97
V15
T13
D[28]
I/O
169
99
Y16
R13
A[27]/DRA[0]
Out
172
100
W16
M11
D[27]
I/O
174
101
V16
T14
A[26]/DRA[1]
O
177
Table W. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
48
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
102
Y17
N12
D[26]
I/O
179
103
W17
R14
A[25]/DRA[2]
O
182
104
Y18
T15
D[25]
I/O
184
105
V17
N13
HALFWORD
O
187
106
W18
R16
A[24]/DRA[3]
O
189
109
Y19
P15
D[24]
I/O
191
110
W20
M13
A[23]/DRA[4]
O
194
111
U18
N16
D[23]
I/O
196
112
V20
L12
A[22]/DRA[5]
O
199
113
U19
N15
D[22]
I/O
201
114
U20
L13
A[21]/DRA[6]
O
204
115
T19
M16
D[21]
I/O
206
117
T20
M15
A[20]/DRA[7]
O
209
118
R19
K11
D[20]
I/O
211
119
R20
L16
A[19]/DRA[8]
O
214
120
T18
K12
D[19]
I/O
216
121
P19
L15
A[18]/DRA[9]
O
219
122
P20
K13
D[18]
I/O
221
126
R18
J10
A[17]/DRA[10]
O
224
127
N19
J16
D[17]
I/O
226
128
N20
J11
A[16]/DRA[11]
O
229
129
P18
J15
D[16]
I/O
231
130
M19
J12
A[15]/DRA[12]
O
234
131
N18
H16
D[15]
I/O
236
132
L20
J13
A[14]/DRA[13]
O
239
133
L19
H15
D[14]
I/O
241
134
M18
H13
A[13]/DRA[14]
O
244
135
K20
G16
D[13]
I/O
246
136
K19
H12
A[12]
O
249
137
K18
G15
D[12]
I/O
251
138
J20
H11
A[11]
O
254
141
J19
F15
D[11]
I/O
256
142
H20
H10
A[10]
O
259
143
H19
E16
D[10]
I/O
261
144
J18
G13
A[9]
O
264
145
K3
E15
D[9]
I/O
266
146
Y3
G12
A[8]
O
269
147
G20
D16
D[8]
I/O
271
Table W. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
49
EP7311
High-Performance, Low-Power System on Chip
148
H18
G11
A[7]
O
274
150
F20
D15
D[7]
I/O
276
151
G19
F13
nBATCHG
I
279
152
E20
C16
nEXTPWR
I
280
153
F19
F12
BATOK
I
281
154
G18
C15
nPOR
I
282
155
D20
E13
nMEDCHG/nBROM
I
283
156
F18
B16
nURESET
I
284
161
D19
B14
WAKEUP
I
285
162
E19
D11
nPWRFL
I
286
163
C19
A13
A[6]
O
287
164
C20
F10
D[6]
I/O
289
165
E18
B13
A[5]
O
292
166
B20
E10
D[5]
I/O
294
169
B16
B12
A[4]
O
297
170
A16
D10
D[4]
I/O
299
171
C15
A11
A[3]
O
302
172
B15
G9
D[3]
I/O
304
173
A15
B11
A[2]
O
307
175
C14
A10
D[2]
I/O
309
176
B14
F9
A[1]
O
312
177
A14
B10
D[1]
I/O
314
178
C13
E9
A[0]
O
317
179
B13
A9
D[0]
I/O
319
184
A13
D8
CL2
O
322
185
C12
B8
CL1
O
324
186
B12
E8
FRM
O
326
187
A12
A7
M
O
328
188
C11
F8
DD[3]
I/O
330
189
B11
B7
DD[2]
I/O
333
191
B10
A6
DD[1]
I/O
336
192
A10
G8
DD[0]
I/O
339
193
A9
B6
nSDCS[1]
O
342
194
B9
D7
nSDCS[0]
O
344
195
C9
A5
SDQM[3]
I/O
346
196
A8
E7
SDQM[2]
I/O
349
199
B8
F7
SDCKE
I/O
352
200
C8
A4
SDCLK
I/O
355
Table W. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
50
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
1) See EP7311 Users' Manual for pin naming / functionality.
2) For each pad, the JTAG connection ordering is input,
output, then enable as applicable.
201
A7
D6
nMWE/nSDWE
O
358
202
B7
B4
nMOE/nSDCAS
O
360
204
C7
E6
nCS[0]
O
362
205
A6
A3
nCS[1]
O
364
206
B6
D5
nCS[2]
O
366
207
C6
B3
nCS[3]
O
368
208
A5
A2
nCS[4]
O
370
Table W. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
51
EP7311
High-Performance, Low-Power System on Chip
CONVENTIONS
This section presents acronyms, abbreviations, units of
measurement, and conventions used in this data sheet.
Acronyms and Abbreviations
Table X lists abbreviations and acronyms used in this
data sheet.
Units of Measurement
Table X. Acronyms and Abbreviations
Acronym/
Abbreviation
Definition
A/D
analog-to-digital
ADC
analog-to-digital converter
CODEC
coder / decoder
D/A
digital-to-analog
DMA
direct-memory access
EPB
embedded peripheral bus
FCS
frame check sequence
FIFO
first in / first out
FIQ
fast interrupt request
GPIO
general purpose I/O
ICT
in circuit test
IR
infrared
IRQ
standard interrupt request
IrDA
Infrared Data Association
JTAG
Joint Test Action Group
LCD
liquid crystal display
LED
light-emitting diode
LQFP
low profile quad flat pack
LSB
least significant bit
MIPS
millions of instructions per second
MMU
memory management unit
MSB
most significant bit
PBGA
plastic ball grid array
PCB
printed circuit board
PDA
personal digital assistant
PLL
phase locked loop
p/u
pull-up resistor
RISC
reduced instruction set computer
RTC
Real-Time Clock
SIR
slow (9600­115.2 kbps) infrared
SRAM
static random access memory
SSI
synchronous serial interface
TAP
test access port
TLB
translation lookaside buffer
UART
universal asynchronous receiver
Table Y. Unit of Measurement
Symbol
Unit of Measure
°
C
degree Celsius
fs
sample frequency
Hz
hertz (cycle per second)
kbps
kilobits per second
KB
kilobyte (1,024 bytes)
kHz
kilohertz
k
kilohm
Mbps
megabits (1,048,576 bits) per second
MB
megabyte (1,048,576 bytes)
MBps
megabytes per second
MHz
megahertz (1,000 kilohertz)
µ
A
microampere
µ
F
microfarad
µ
W
microwatt
µ
s
microsecond (1,000 nanoseconds)
mA
milliampere
mW
milliwatt
ms
millisecond (1,000 microseconds)
ns
nanosecond
V
volt
W
watt
Table X. Acronyms and Abbreviations (Continued)
Acronym/
Abbreviation
Definition
52
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
General Conventions
Hexadecimal numbers are presented with all letters in
uppercase and a lowercase "h" appended or with a 0x at
the beginning. For example, 0x14 and 03CAh are
hexadecimal numbers. Binary numbers are enclosed in
single quotation marks when in text (for example, `11'
designates a binary number). Numbers not indicated by
an "h", 0x or quotation marks are decimal.
Registers are referred to by acronym, with bits listed in
brackets separated by a colon (:) (for example,
CODR[7:0]), and are described in the EP7311 User's
Manual. The use of "TBD" indicates values that are "to
be determined," "n/a" designates "not available," and
"n/c" indicates a pin that is a "no connect."
Pin Description Conventions
Abbreviations used for signal directions are listed in
Table Z.
Table Z. Pin Description Conventions
Abbreviation
Direction
I
Input
O
Output
I/O
Input or Output
DS506PP1
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
53
EP7311
High-Performance, Low-Power System on Chip
ORDERING INFORMATION
The order number for the device is:
Note:
Contact Cirrus Logic for up-to-date information on revisions. Go to the Cirrus Logic Internet site at
http://cirrus.com/corporate/contacts to find contact information for your local sales representative.
EP7311 -- CV -- C
Product Line:
Embedded Processor
Part Number
Temperature Range:
Package Type:
V = Low Profile Quad Flat Pack
B = Plastic Ball Grid Array (17 mm x 17 mm)
Revision
R = Reduced Ball Grid Array (13 mm x 13 mm)
C = Commercial
E = Extended Operating Version
I = Industrial Operating Version
54
©
Copyright Cirrus Logic, Inc. 2003
(All Rights Reserved)
DS506PP1
EP7311
High-Performance, Low-Power System on Chip
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/sales.cfm
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change
without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify,
before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information,
including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property
of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other
intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for
use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general
distribution, advertising or promotional purposes, or for creating any work for resale.
An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and
controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. An export license and/or quota needs to be obtained from the
competent authorities of the Chinese Government if any of the products or technologies described in this material is subject to the PRC Foreign Trade Law and is to be
exported or taken out of the PRC.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT
SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS
(INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR SECURITY DEVICES). INCLUSION
OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WAR-
RANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE,
WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE
USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS,
EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM
OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, the Cirrus Logic logo designs, Maverick, and MaverickKey are trademarks of Cirrus Logic, Inc. All other brand and product names in this document
may be trademarks or service marks of their respective owners.
LINUX is a registered trademark of Linus Torvalds.